Post-Quantum Cryptography

Douglas Stebila

WATERLOO

M3AAWG • Toronto • 2024-10-08

Agenda

- The role of cryptography in online security
- The quantum threat
- Post-quantum cryptography
- Standardization
- Post-quantum TLS
- Open source software
- Challenges
- Discussion

M³AAWG 62 - Celebrate the Future

M³AAWG is celebrating 20 years of collaboration in the fight against online abuse! Our 62nd General Meeting in Toronto will feature cutting-edge sessions on emerging technologies, Al-driven cybersecurity, and quantum cryptography.

https://fonts.gstatic.com

Resources - all served securely

rces on this page are

Abou	t Us		

Best Practices

Public Policy

News

d securely

Cryptographic building blocks

Connection - secure connection settings

ß

The connection to this site is encrypted and authenticated using TLS 1.3, X25519, and AES_256_GCM.

Quantum computing

- Represent and process information using quantum mechanics
- Processing information in superposition can dramatically speed some computations
 - But not necessarily all (quantum computers aren't magic)

Technology for the quantum future

Accelerating scientific discovery

Azure Quantum is leading the industry with advanced technology that accelerates scientific discovery.

Discover our solutions >

Theorem (Shor, 1984): There exists a polynomialtime quantum algorithm that can factor and compute discrete logarithms.

Cryptographic building blocks

Connection - secure connection settings

ß

The connection to this site is encrypted and authenticated using TLS 1.3, X25519, and AES_256_GCM.

Post-quantum cryptography

a.k.a. quantum-resistant algorithms

Cryptography based on computational assumptions believed to be resistant to attacks by quantum computers

Uses only classical (non-quantum) operations to implement

Quantum key distribution

Also provides quantum-resistant confidentiality

Uses quantum mechanics to protect information

Doesn't require a full quantum computer

But does require new communication infrastructure

- Lasers, telescopes, fiber optics, ...
- => Not the subject of this talk

Start of US government activity on PQC

"IAD will initiate a transition to quantum resistant algorithms in the not too distant future."

– NSA Information Assurance Directorate, Aug. 2015

Post-Quantum Cryptography

Post-Quantum Cryptography Standardization

Post-quantum candidate algorithm nominations are due November 30, 2017. Call for Proposals

Call for Proposals Announcement

NIST has initiated a process to solicit, evaluate, and standardize one or more quantum-resistant public-key cryptographic algorithms. Currently, public-key cryptographic algorithms are specified in FIPS 186-4, *Digital Signature Standard*, as well as special publications SP 800-56A Revision 2, *Recommendation for Pair-Wise Key Establishment Schemes Using Discrete Logarithm Cryptography* and SP 800-56B Revision 1, *Recommendation for Pair-Wise Key-Establishment Schemes Using Integer*

National Security Agency | Cybersecurity Advisory

Announcing the Commercial National Security Algorithm Suite 2.0

Executive summary

The need for protection against a future deployment of a cryptanalytically relevant quantum computer (CRQC) is well documented. That story begins in the mid-1990s when Peter Shor discovered a CRQC would break CNSA 2.0

Public-key CRYSTALS-Dilithium CRYSTALS-Kyber

Symmetric-key Advanced Encryption Standard (AES) Secure Hash Algorithm (SHA)

Software and Firmware Updates

Xtended Merkle Signature Scheme (XMSS) Leighton-Micali Signature (LMS)

CNSA 2.0 Timeline

2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033

Software/firmware signing Web browsers/servers and cloud services Traditional networking equipment Operating systems Niche equipment Custom application and legacy equipment

CNSA 2.0 added as an option and tested

- CNSA 2.0 as the default and preferred
- Exclusively use CNSA 2.0 by this year

https://media.defense.gov/2022/Sep/07/2003071834/-1/-1/0/CSA_CNSA_2.0_ALGORITHMS_.PDF

C

🖲 The Race to Avert Quantum C 🛛 🗙 🕂

 \rightarrow ≡ Q,

 \leftarrow

nytimes.com/2023/10/22/us/politics/quantum-computing-encryption.html

🖞 ☆ 💢 🗯 🗖 🚱 :

LOG IN

The New York Times

SUBSCRIBE FOR \$0.50 (CDN)/WEEK

The Race to Save Our Secrets From the **Computers of the Future**

Quantum technology could compromise our encryption systems. Can America replace them before it's too late?

https://www.nytimes.com/2023/10/22/us/politics/quantum-computing-encryption.html

REPORT ON POST-QUANTUM CRYPTOGRAPHY

Julv 2024

Preparedness Act, Public Law No: 117-260

Estimated cost to migrate US government to PQC between 2025–2035:

\$7.1 billion

PRESENTED TO Senate Committee on Homeland Security and Governmental Affairs House Committee on Oversight and Accountability

Landscape of quantum computing

https://sam-jaques.appspot.com/quantum_landscape_2023

When will a cryptographically relevant quantum computer be built?

≥ 50% of experts surveyed think there's ≥ 50% chance of a cryptographically relevant quantum computer by 2038

2023 EXPERTS' ESTIMATES OF LIKELIHOOD OF A QUANTUM COMPUTER ABLE TO BREAK RSA-2048 IN 24 HOURS

Number of experts who indicated a certain likelihood in each indicated timeframe

Timeline to replace cryptographic algorithms

Standardization of PQ cryptography

The path to standardization

Principles	LegislationRegulators
Policies	 Standards organizations: ISO, NIST, Industry bodies: PCI-DSS, ANSI,
Protocols	 Technology standards organizations IETF, ANSI,
Mathematics	 Specialist organizations NIST, CFRG

Primary goals for post-quantum crypto

Confidentiality

in the public key setting

Public key encryption schemes

- Alternatively: key encapsulation mechanisms
 - KEMs are a generalization of two-party Diffie–Hellman-style key exchange
 - Easy to convert KEM into PKE and vice versa

Authentication & integrity in the public key setting

Digital signature schemes

NIST Post-quantum Crypto Project timeline

34

Families of post-quantum cryptography

Hash- & symmetric-based

- Can only be used to make signatures, not public key encryption
- Very high confidence in hashbased signatures, but large signatures required for many signature-systems

Code-based

- Long-studied cryptosystems with moderately high confidence for some code families
- Challenges in communication sizes

Multivariate quadratic

- Variety of systems with various levels of confidence and trade-offs
- Substantial break of Rainbow algorithm in Round 3

Lattice-based

- High level of academic interest in this field, flexible constructions
- Can achieve reasonable communication sizes

Elliptic curve isogenies

- Newest mathematical construction
- Small communication, slower computation
- Substantial break of SIKE in Round 4

NIST PQC standards

<u>Key encapsulation</u> <u>mechanisms</u>

- ML-KEM (FIPS 203)
 - a.k.a. Kyber
 - Lattice-based

Digital signatures

- ML-DSA (FIPS 204)
 - a.k.a. Dilithium
 - Lattice-based
- SLH-DSA (FIPS 205)
 - a.k.a. SPHINCS+
 - Stateless hash-based
- FN-DSA (draft pending)
 - a.k.a. Falcon
 - Lattice-based

PQ algorithms being standardized

Trade-offs with post-quantum crypto

Long-standing confidence in quantum-resistance

Fast computation

Small communication

Trade-offs with post-quantum crypto

RSA and elliptic curves

Lattice-based cryptography

Hash-based signatures

TLS handshake: 1.3 KB TLS handshake: 11.2 KB TLS handshake: 24.6 KB

Addressing the challenges of using PQ crypto

Addressing the challenges of using PQ crypto

Lack of confidence in security

"Hybrid": Use multiple algorithms

Slow computation

Actually not too bad; research on algorithmic optimizations; general CPU improvements

Large communication

Hardest to avoid; may need to change how network protocols use PQ crypto

Hybrid approach:

use traditional and post-quantum simultaneously such that successful attack needs to break both

Hybrid: Why use two (or more) algorithms?

1. Reduce risk from break of one algorithm

2. Ease transition with improved backwards compatibility

Why to <u>not</u> use hybrid

enisa

Information Security

Federal Office

- Increases number of design choices
- Increases implementation complexity
- Increases code size
- Regulatory fracturing:
 - Hybrids required: BSI (Germany), ANSSI (France)
 - Hybrids allowed: ENISA (EU), ETSI
 - Hybrids discouraged: NSA (US)

No decision on hybrids: NCSC (UK), CSE (Canada)

Bottom half of slide from Mike Ounsworth presentation <u>https://pkic.org/events/2023/post-quantum-cryptography-conference/pkic-pqcc-pqc-at-ietf-mike-ounsworth-entrust.pdf</u>; updated 2023-03-27 with corrected information from <u>https://pkic.org/events/2023/post-quantum-cryptography-conference/pkic-pqcc-how-gc-preparing-for-pgc-melanie-anderson-jonathan-hammell-canadian-government.pdf</u>

NSSI

Challenge: larger communication sizes

Higher bandwidth Higher latency usage

- Impact on hightraffic providers
- Higher power usage in batteryoperated devices
- Larger data in early flows of TCP leads to more round trips if exceeding the TCP congestion window
- More packets on poor-quality links leads to more retransmission

Impossible to fit in some protocols

 e.g. DNSSEC over UDP has problems with packets larger than 1232 bytes [1]

PQ algorithm sizes

Public key encryption scheme	Public key size (bytes)	Ciphertext overhead (bytes)
RSA-2048	256	256
ECDH (NISTp256, X25519)	32	32
ML-KEM-512	800	768
ML-KEM-768	1184	1088

Signature scheme	Public key size (bytes)	Signature size (bytes)
RSA-2048	256	256
ECDSA (NISTp256, Ed25519)	32	64
ML-DSA-44	1312	2420
SLH-DSA-SHA2-128s	32	7856
Falcon-512	897	752
XMSS / LMS	48–128	1600–25000+

Making TLS post-quantum

SSL/TLS Protocol

Three dimensions of "post-quantum TLS"

#1: Security goals • Confidentiality • Authentication

#3: Impact

- Protocol
 - changes
- Compatibility
- Performance

#2: Algorithms

• PQ-only

• Hybrid

Pre-shared key (PSK) mode

- Already
 implemented
- Still has key distribution problem
- No forward secrecy
- New mode: external PSK

Pre-shared key	Key exchange		
(PSK) mode	PQ-only	Hybrid	
 Already implemented Still has key distribution problem No forward secrecy New mode: external PSK 	 Fairly easy decry 	 to implement est: harvest now, ypt later Robust to 1 algorithm break "Safe choice" In demand during pre- 	
external FOR		during pre- certification	

Pre-shared key	Key exchange		Authentication	
(PSK) mode	PQ-only	Hybrid	PQ-only	Hybrid / Composite
 Already implemented Still has key distribution 	 Fairly easy to implement Needed soonest: harvest now, decrypt later 		 Requires coordinates coordinates coordinates authority of the second s	nation with prities eeded: can't eak authentication
 problem No forward secrecy New mode: external PSK 		 Robust to 1 algorithm break "Safe choice" In demand during pre- certification 		 May not make sense in the context of a negotiated protocol like TLS

Pre-shared key		exchange	Authentication		Alternative
(PSK) mode	PQ-only	Hybrid	Hybrid PQ-only Hybrid / Composite		protocol designs
 Already implemented Still has key distribution problem No forward secrecy New mode: 	 Fairly ea Needed soo de 	 sy to implement nest: harvest now, crypt later Robust to 1 algorithm break "Safe choice" 	 Requires coord certificate auth Less urgently r retroactively br Size ⁽³⁾ 	 dination with orities needed: can't reak authentication May not make sense in the context of a negotiated protocol like 	 e.g. AuthKEM / KEMTLS Harder to implement; may require state machine changes Lots of interesting
external FOR		during pre- certification		TLS	research!
		Area of initial focus			53

Hybrid key exchange in TLS 1.3

Network Working Group Internet-Draft Intended status: Informational Expires: 10 March 2024 D. Stebila University of Waterloo S. Fluhrer Cisco Systems S. Gueron U. Haifa

7 September 2023

Hybrid key exchange in TLS 1.3 draft-ietf-tls-hybrid-design-09

Abstract

Hybrid key exchange refers to using multiple key exchange algorithms simultaneously and combining the result with the goal of providing security even if all but one of the component algorithms is broken. It is motivated by transition to post-quantum cryptography. This document provides a construction for hybrid key exchange in the Transport Layer Security (TLS) protocol version 1.3.

- Fairly mature
- Early deployments showing reasonable performance:
 - Chrome
 - Cloudflare
 - Open Quantum Safe
 - WolfSSL

• ...

WARNING: IETF considers TLS 1.2 to be frozen. "Post-quantum cryptography for TLS 1.2 WILL NOT be supported."

54

Critical path to adoption on the web

NIST	NIST round 3 selection	NIST draft standard	FIPS standard				
CFRG				CFRG standard			
TLS working group					TLS PQ standard		
LAMPS X.509 working group					X.509 PQ standard		
Implementers	Early prototypes		Preliminary adoption			Standard adoption	FIPS-certified adoption
Certificate authorities					CA/B Forum guidelines	Deployment	

Algorithm standardization status

	Kyber/ML-KEM	Dilithium/ML-DSA	Falcon
Primary standardizer:	NIST	NIST	NIST
Status at NIST:	FIPS 203	FIPS 304	Draft pending
Status at IETF/IRTF:	CFRG draft available		

	SPHINCS+	XMSS	LMS
Primary standardizer:	NIST	IRTF	IRTF
Status at NIST:	FIPS 205	Approved in SP 800-208 (2020)	Approved in SP 800-208 (2020)
Status at IETF/IRTF:		RFC 8391 (2018)	RFC 8554 (2019) Draft for new parameter sets

Protocol	Key exchange / PKE	Authentication	Alternatives
TLS 1.3 (secure channel)	Drafts: • Hybrid Kyber & ML-KEM • External PSK	Prototypes	 AuthKEM / KEMTLS TurboTLS Merkle Tree certs.
X.509 (certificates)	Drafts: Composite ML-KEM 	Drafts: Composite ML-DSA IETF PQC PKI hackathon 	
Secure Shell (SSH) (secure channel)	Drafts: Hybrid Kyber OpenSSH: Hybrid NTRU Prime	Prototypes	
IPsec (secure channel)	RFCs: PSK Drafts: hybrid, large messages	Drafts: Hybrid non-composite Negotiation 	
CMS (secure email,)	Drafts:Using KEMs in CMSComposite ML-KEM	RFCs: LMS Drafts: • Composite ML-DSA • SPHINCS+	
DNSSEC (Domain Name Security)	Drafts: Stateful HBS		Merkle Tree ladderRequest-based frag.
OpenPGP (secure email)	Drafts: • Composite Kyber	Drafts: Composite Dilithium PQ-only SPHINCS+ 	

https://github.com/ietf-wg-pquip/state-of-protocols-and-pqc

Open source software

OPEN QUANTUM SAFE

software for the transition to quantum-resistant cryptography

https://openquantumsafe.org/ • https://github.com/open-quantum-safe/

Open Quantum Safe Project

https://openquantumsafe.org/ • https://github.com/open-quantum-safe/

Post-Quantum Cryptography Alliance

To advance the adoption of post-quantum cryptography, by producing high-assurance software implementations of standardized algorithms, and supporting the continued development and standardization of new post-quantum algorithms with software for evaluation and prototyping.

Post-Quantum Cryptography Alliance

Getting involved

- Current projects: Open Quantum Safe, PQ Code Package
- All development done under open source licenses (MIT, Apache 2)
- Participation open to all
- Organizations can join as members to influence budget and direction

Wrapping up

Call to action

- Inventory where and how your product/code uses cryptography
- Implement crypto agility to minimize code changes
- Begin to pilot the use of post-quantum algorithms
- Prepare to use different algorithms for encryption, key exchange, and signatures
- Test your code for impact of large key sizes, ciphers, and signatures
- Participate in standardization efforts and foster awareness

Post-Quantum Cryptography

Douglas Stebila

Public key cryptography designed to resist attacks by quantum computers

- Core algorithms now standardized by US National Institute of Standards and Technology
- In progress: standardization of PQC in Internet protocols
- New technology with different trade-offs

Questions?

 Join the Data & Identity Protection Working Session later today at 4:30pm

WATERLOO

https://www.douglas.stebila.ca/research • https://openquantumsafe.org/

Appendix

Why use two (or more) algorithms?

1. Reduce risk from break of one algorithm

- Enable early adopters to get post-quantum security without abandoning security of existing algorithms
- Retain security as long as at least one algorithm is not broken
- Uncertainty re: long-term security of existing cryptographic assumptions
- Uncertainty re: newer cryptographic assumptions

2. Ease transition with improved backwards compatibility

Why use two (or more) algorithms?

1. Reduce risk from break of one algorithm

2. Ease transition with improved backwards compatibility

- Design backwards-compatible data structures with old algorithms that can be recognized by systems that haven't been upgraded, but new implementations will use new algorithms
- May not be necessary for negotiated protocols like TLS

Why use two (or more) algorithms?

1. Reduce risk from break of one algorithm

2. Ease transition with improved backwards compatibility and agility

- Early adopters may want to use post-quantum before standards-compliant (FIPS-)certified implementations are available
- Possible to combine (in a certified way) keying material from certified (non-PQ) implementation with non-certified keying material

PQ in other protocols

Composite ML-DSA in X.509

- Data structures for composite public keys and signatures in X.509 (and CMS)
- New OID for each ML-DSA hybrid with RSA, ECDSA, Ed25519, Ed448
- Uses pre-hashing then signs the OID || hash using each algorithm
 - Including composite OID in message adds non-separability
- See IETF PQC Certificates hackathon:
 - <u>https://github.com/IETF-Hackathon/pqc-certificates</u>

https://datatracker.ietf.org/doc/draft-ounsworth-pq-composite-sigs/

Secure Shell (SSH)

<u>Key exchange</u>

- Hybrid KEX Internet-Draft
 available
 - Multiple implementations (Amazon, OQS, wolfSSH, ...)
 - OpenSSH using Streamlined NTRU Prime + x25519
 by default since OpenSSH v9 (April 2022)

<u>Authentication</u>

- No Internet-Drafts for authentication
- Experiments:
 - OQS PQ & hybrid auth
 - OpenSSH using XMSS-based authentication since OpenSSH v7.7 (April 2018)
 - (Not compiled in by default)

IPsec / IKEv2

Key exchange

- RFC for pre-shared keys
- Internet-Drafts for
 - Multiple key exchanges
 - Mechanisms for handling large messages

<u>Authentication</u>

- Internet-Drafts for
 - Hybrid non-composite authentication
 - Negotiation of authentication methods

CMS

Cryptographic Message Syntax; used in S/MIME

Key exchange / PKE

- Internet-Draft for:
 - KEMs generically in CMS
 - Composite KEMs generically, with ML-KEM hybrids

<u>Authentication</u>

RFC for:LMS in CMS

Internet-Draft for:
SPHINCS+ in CMS

DNSSEC

<u>Authentication</u>

- Internet-Drafts for:
 - Stateful hash-based signatures (expired)

<u>Research ideas</u>

- Merkle Tree ladder [1]
- •Request-based fragmentation [2]

OpenPGP

Public key encryption

- Internet-Draft for:
 - Composite PQ/T Kyber + elliptic curves

<u>Digital signatures</u>

- Internet-Draft for:
 - Composite PQ/T
 Dilithium + elliptic
 curves
 - SPHINCS+ (standalone – non-hybrid)

Alternative protocol designs

<u>Strategy #1:</u>

Change cryptographic protocols to use PQ algorithms more cleverly/efficiently

- AuthKEM / KEMTLS [1]
- Merkle Tree certificates [2]

Strategy #2:

Change network protocols to be more communication efficient

- Technically about reducing latency due to communication size, not reducing communication size itself
- DNSSEC ARRF [3]
- TurboTLS [4]

[1] <u>https://kemtls.org/</u> [2] <u>https://datatracker.ietf.org/doc/draft-davidben-tls-merkle-tree-certs/</u>
 [3] <u>https://arxiv.org/abs/2211.14196</u> [4] <u>https://arxiv.org/abs/2302.05311</u>