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Abstract. Cryptographic schemes often contain verification steps that are essential for secu-
rity. Yet, faulty implementations missing these steps can easily go unnoticed, as the schemes
might still function correctly. A prominent instance of such a verification step is the re-
encryption check in the Fujisaki–Okamoto (FO) transform that plays a prominent role in
the post-quantum key encapsulation mechanisms (KEMs) considered in NIST’s PQC stan-
dardization process. In KEMs built from FO, decapsulation performs a re-encryption check
that is essential for security, but not for functionality. In other words, it will go unnoticed
if this essential step is omitted or wrongly implemented, opening the door for key recovery
attacks. Notably, such an implementation flaw was present in HQC’s reference implementation
and was only noticed after 19 months.
In this work, we develop a modified FO transform that binds re-encryption to functionality,
ensuring that a faulty implementation which skips re-encryption will be exposed through basic
correctness tests. We do so by adapting the “verifiable verification” methodology of Fischlin
and Günther (CCS 2023) to the context of FO-based KEMs. More concretely, by exporting
an unpredictable confirmation code from the public key encryption and embedding it into
the key derivation function, we can confirm that (most of) the re-encryption step was indeed
performed during decapsulation. We formalize this concept, establish modified FO transforms,
and prove how unpredictable PKE confirmation codes turn into noticeable correctness errors
for faulty implementations. We show how to apply this technique to ML-KEM and HQC, both
with negligible overhead, by leveraging the entropy lost through ciphertext compression or
truncation. We confirm that our approach works through mathematical proofs, as well as
experimental data. Our experiments show that the implementation flaw in HQC’s reference
implementation indeed makes basic test cases when following our approach.

Keywords: Key encapsulation mechanism, public-key encryption, Fujisaki–Okamoto transforma-
tion, NIST, ML-KEM, HQC, post-quantum security, QROM

1 Introduction

A key encapsulation mechanism (KEM) allows two parties to establish a shared secret key using
only public communication. Post-quantum KEMs, like NIST’s recent standard ML-KEM [21], are at
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the heart of the current transition to quantum-safe cryptography. The most widespread approach
used in constructing post-quantum KEMs is to design a public-key encryption (PKE) scheme and
then apply the Fujisaki–Okamoto (FO) transform [8, 9] that turns any weakly secure PKE scheme
into an IND-CCA-secure KEM using de-randomization and a re-encryption check.

The FO transform. In a nutshell, the FO transform builds KEM encapsulation by sampling a
random message m, PKE-encrypting m into a ciphertext c with randomness r derived from m, and
outputting c and a shared secret derived from m. Decapsulation PKE-decrypts c into m′, derives
randomness r′ from m′, re-encrypts m′ using r′ into c′, and checks that c = c′ before accepting with
the key derived from m′. This is what is called the FO re-encryption check.

Brittle cryptography. When implementing cryptographic schemes and protocols, every detail
matters and even small implementation bugs can have devastating effects on security. In that regard,
cryptographic code can be particularly brittle, especially when some cryptographic verification steps
are accidentally skipped or wrongly executed: from a functional point of view, such bugs can be
entirely unnoticeable, yet render an implementation completely insecure. A prime example of such
a bug was the “goto fail” bug [24] in Apple’s SSL/TLS library, where a misplaced goto fail; code
line resulted in crucial certificate validation steps being skipped, causing invalid certificates to pass
validation.

The FO re-encryption check is prone to similar implementation flaws: skipping or wrongly im-
plementing this check could go unnoticed (as honestly generated ciphertexts decrypt correctly), yet
may open the door even for key recovery attacks (when the IND-CCA security guarantee of the FO
transform becomes voided). Indeed, such an implementation flaw was present until recently in the
reference implementation of HQC [1], one of the Round 4 submissions in NIST’s PQC standardiza-
tion process, and was picked up by downstream users of that code, such as liboqs [22, 27]. The
decapsulation code would accept malformed ciphertexts due to an unfortunate interaction of flawed
calculations during re-encryption and a logical flaw checking its result.5 Despite common test cases
for correctness (“Does the shared secret output by encapsulation equal the shared secret output by
decapsulation?”), this flaw was only noticed after 19 months [23].

Making decapsulation recognize implementation faults. In this work, we ask how to better
protect implementations of FO-transformed KEMs from accidentally skipping or wrongly implement-
ing the re-encryption check. Put differently, we want to devise a cryptographic approach to surface
such implementation flaws in a noticeable manner, offering some assurance that a correct implemen-
tation does not miss certain security-crucial steps.

Our approach follows a methodology recently introduced by Fischlin and Günther [7], which in
turn is inspired by an idea of Heninger [10], namely to minimize the impact of inevitable human
errors in implementations by “tying security to basic functionality.” In essence, a security-critical
implementation flaw should ideally noticeably affect the scheme’s functionality, meaning that it will
be noticed early on in basic correctness or interoperability tests.

Fischlin and Günther [7] introduced the notion of confirmation codes, output by a cryptographic
scheme (in addition to its regular outputs). Confirmation codes are to be designed in a way that
they are “unpredictable”: a faulty-but-benign implementation of critical verification steps should be

5 During the re-encryption part of HQC’s decapsulation code, the pseudorandom seed for derandomization
did not include all the inputs used in the corresponding derandomized encapsulation, which lead to the
wrong ciphertext being reconstructed. However, the complex constant-time code to check equality of the
reconstructed and original ciphertexts also had a flaw that effectively flipped the logical result, meaning
the ciphertext would be accepted as valid, and the correct shared secret (based on the decapsulated secret
and the original ciphertext) would be output.
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unlikely to compute them correctly. Such unpredictable confirmation codes can then be used in an
overall protocol to ensure that the protocol will not function correctly (e.g., sender and receiver will be
unable to establish a connection) if one side uses a faulty implementation. Note that unpredictability
need not meet cryptographically small bounds, such as predictability probability less than 2−128:
unpredictability of even 2−1 means that a faulty-but-benign implementation will fail interoperability
or correctness tests half the time, already flagging concerns about the implementation.

We transfer the idea of confirmation codes to the context of FO-based KEMs. By exporting an
unpredictable confirmation code from the underlying PKE scheme and embedding it into the KEM’s
key derivation function, we can confirm that the re-encryption step was indeed performed during
decapsulation. Formally, we augment a PKE encryption algorithm with a confirmation code output
and establish modified FO transforms (following the modularization by Hofheinz, Hövelmanns, and
Kiltz [12]) which integrate this code into the KEM key derivation. Figure 1 illustrates the fault-
recognizing KEM resulting from our confirmation-code-augmented FO transforms. We prove that
unpredictable PKE confirmation codes turn into noticeable correctness errors on the KEM level when
re-encryption is faultily implemented. We finally show how to apply this technique to ML-KEM and
HQC with negligible overhead by leveraging the entropy lost due to rounding or truncating low-order
ciphertext bits; the recipient can only recover this entropy if they indeed implement (nearly all of)
re-encryption. We experimentally confirm that our approach works: it surfaces the flaw in HQC’s
reference implementation by making basic test cases fail.

1.1 Contributions and Technical Overview

Definitions and security notions for PKEs and KEMs. We begin by defining the syntax
and a security notion for confirmation-code-augmented public key encryption schemes, called con-
firmation code unpredictability (cUP). Compared to [7], we suggest a technically refined approach
to capture the idea of a flawed implementation in which not all steps are executed. We model this
through giving the adversary access to all inputs to the algorithm (which would of course allow
them to trivially recompute everything the algorithm computes) but restricting the adversary’s
access to some function F used by the algorithm. Looking ahead to our modifications to the FO
transform, this limited access translates to the adversary being unable to fully/correctly implement
the re-encryption step which depends on F. We define a related notion for KEMs, called faulty im-
plementation correctness (fCOR), which models the ability of an adversarial faulty implementation
to produce correct shared secrets during decapsulation, again with limited access to some function
F used by the algorithm.

Let us emphasize that the core idea here is to catch faulty-but-benign implementations. We are
not interested in capturing malicious implementations, which may of course skip re-encryption but
make targeted calls to the restricted function F. The goal of our work, and the general idea of tying
security to basic functionality [10] and making cryptographic operations verifiable [7], is to make
accidental implementation errors be noticed to assist developers.

Modular FO transforms for confirmation-code-augmented PKEs. We then present a
sequence of modular transformations that build a fault-recognizing KEM from a PKE scheme with
unpredictable confirmation codes such that the KEM has noticeable correctness errors if the FO
re-encryption check is faultily implemented. Following [12] modularizing FO into transforms T and
U, we give confirmation-code-augmented versions of these transforms TC and UC and the resulting
confirmation-code-augmented FO transform FOC, for both the explicit and implicit rejection case.
We show that TC maintains unpredictability and that FOC, like FO, turns a weakly (OW-CPA/
IND-CPA) secure PKE scheme into an IND-CCA KEM; we provide these results in both the random
oracle and quantum random oracle models. Most importantly, we prove that when using our FOC
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Encaps(pk)

01 m←$M
02 (c , cd )← Enc(pk,m)

03 K ← KDF(m, pk , cd )

04 return (K, c)

Decaps(sk, c)

05 m′ ← Dec(sk, c)

06 (c′ , cd′ )← Enc(pk,m′)

07 check c′ = c
08 K′ ← KDF(m′, pk , cd′ )

09 return K′

Fig. 1: Simplified encapsulation and decapsulation algorithms of a fault-recognizing KEM, using our
confirmation-code-augmented FO transform on a PKE scheme where encryption (Enc) additionally

outputs a confirmation code cd. We highlight differences to a regular FO transform in violet boxes .

PKEC

OW-CPA/
IND-CPA

PKEC

cUP

PKE′C

det. + cUP

KEMC

fCOR

TC

Thm. 11

UC

Thm. 14

PKEC

OW-CPA/
IND-CPA

PKE′C

det + OW-CPA

KEMC

IND-CCA

UC

Thms. 26/27

FOC = UC ◦ TC

Cor. 29, Thm. 30

Fig. 2: Summary of our transformations to build a fault-recognizing KEM KEMC from a
confirmation-code-augmented PKE PKEC using our FOC = UC ◦ TC transform. Top: Sequence
of transformations/theorems to achieve faulty implementation correctness (fCOR) for KEMC from
confirmation-code unpredictability (cUP) and security of PKEC. Bottom: Sequence of transforma-
tions/theorems to achieve IND-CCA-security for KEMC from CPA security of PKEC.

transforms on a PKE scheme with unpredictable confirmation codes (cUP), the resulting fault-
recognizing KEM (illustrated in Fig. 1) will have noticeable correctness errors when re-encryption
is faultily implemented (fCOR). Figure 2 summarizes these transformations and results.

Application to ML-KEM and HQC. We present a minimally modified version of ML-KEM [21] that
augments the underlying PKE with confirmation codes based on the uncompressed module-LWE
ciphertexts and includes them in the key derivation, following our FOC = UC ◦ TC transform. This
introduces negligible overhead: using short confirmation codes of only 12–20 bytes ensures that a
single correctness test fails with probability at least ∼ 1/3, which will be highly noticeable in practice,
and incurs at most 3.4% overhead in our experimental implementation.

We also present a variant of HQC [1] with confirmation codes. Here we use the last byte of
a ciphertext component before truncation as the confirmation code; experimentally this incurs at
most 0.25% overhead on runtime. We confirmed that adding a confirmation code to HQC would
have caught the bug HQC’s reference implementation [23]: with the confirmation code added, basic
correctness tests (comparing whether the shared secret output by encapsulation equals the shared
secret output by decapsulation) failed immediately in our experiments.
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1.2 Related Work

The idea of tying security to basic functionality as a means to hedge against implementation errors
was presented by Heninger [10] in a talk at the Workshop on Attacks in Cryptography 2 (WAC2) affil-
iated with Crypto 2019. Heninger discussed various flaws in deployed cryptographic implementations,
suggesting that the “fragility under human error should be a cryptographic design consideration.”
Inspired by this idea, Fischlin and Günther [7] introduced a methodology for “verifiable verification”,
supporting the detection of implementation flaws on a cryptographic level. By letting verification
algorithms output a confirmation code that can be used in higher-level protocols, they showed how
to make faulty verification steps surface on the protocol level as noticeable correctness errors. The
focus of [7] is on signature and MAC verification as well as elliptic curve point validation, and their
usage in key exchange protocols. Our work applies the methodology to post-quantum KEMs and the
FO transform, where the re-encryption step is similarly prone to implementation errors or accidental
omission (possibly even intentional “optimization”), as also suggested by Heninger in a later talk
at the Real World Post Quantum Workshop 2024 [11] and evidenced by the implementation flaw in
HQC’s reference implementation [23].

During the NIST post-quantum standardization process, there has been a lot of work on the
security analysis of FO-like transformations, with immense progress made stemming from the devel-
opment of new QROM techniques. FO comes in two flavours with respect to the rejection mode used
to reject invalid ciphertexts. (More details on this in Remark 5 in Sect. 2.2.) The FO variants with
implicit rejection were proven secure against quantum attackers much earlier [12], with follow-up
proofs allowing for successively better parameters [5, 15, 17, 19, 26], using successively more refined
QROM techniques. For explicit rejection, there now also exist results if the base encryption scheme
is probabilistic. Whereas the first proofs for explicit rejection [6, 18] did not allow for the same pa-
rameters as the ones for implicit rejection, two more recent results [14,16] closed this gap by making
use of an emerging new quantum proof technique, the extractable quantum random oracle [6]. If the
base PKE scheme is deterministic, currently no security proofs for explicitly rejecting variants are
known.

2 Preliminaries

In this section we recall the necessary background from previous literature that we will use through-
out the paper: we recall definitions and notions for PKE schemes and KEMs (deferring the standard
OW-CPA, IND-CPA, and IND-CCA security notions to Appendix A), the Fujisaki-Okamoto transfor-
mation, and a helper result for the quantum-accessible ROM.

2.1 Public-Key Encryption

A public-key encryption scheme PKE = (KeyGen,Enc,Dec) consists of three algorithms and a finite
message spaceM. The key generation algorithm KeyGen outputs a key pair (pk, sk), with pk defining
a randomness space R = R(pk). The encryption algorithm Enc, on input pk and a message m ∈M,
produces an encryption c ← Enc(pk,m) of m under the public key pk. If necessary, we explicitly
specify the used randomness of encryption by writing c = Enc(pk,m; r), where r←$R. The decryp-
tion algorithm Dec, on input sk and a ciphertext c, yields either a message m = Dec(sk, c) ∈ M or
a special symbol ⊥ /∈M to show that c is not a valid ciphertext.

In the security analysis of FO-based KEMs, it is usually necessary to utilize notions of correct-
ness. This is used to analyze the likelihood of a particular class of chosen-ciphertext attacks, where
attackers found a failing ciphertext c, meaning c decrypts to a different message than its originating
one, and uses this to obtain some leakage on the secret key. We now recall the information-theoretic
correctness notion that was given in [12].
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Game FFP-ATK
01 (pk, sk)← KeyGen

02 m← AOATK,G
′
(pk)

03 c← Enc(pk,m)
04 m′ ← Dec(sk, c)
05 return Jm′ 6= mK

ODec(c)
06 m← Dec(sk, c)
07 return m

Fig. 3: Games FFP-ATK for a deterministic PKE, where ATK ∈ {CPA,CCA}. OATK is the decryption
oracle present in the respective game (see Definition 2) and G′ is a random oracle, provided if it is
used in the definition of PKE.

Definition 1 (PKE correctness [12]). We call a public-key encryption scheme PKE δ-correct if
E [maxm∈M Pr[Dec(sk, c) 6= m|c← Enc(pk,m)]] ≤ δ, where the expectation is taken over (pk, sk) ←
KeyGen.

This definition reflects that even a (possibly unbounded) adversary with access to the key pair
cannot find failing messages with a probability higher than δ. A computational (game-based) ap-
proach that does not hand over the secret key was introduced in [14], via the Find Failing Plaintext
(FFP) notions below.

Definition 2 (FFP-ATK). Let PKE = (KeyGen,Enc,Dec) be a deterministic public-key encryption
scheme. For ATK ∈ {CPA,CCA}, we define FFP-ATK games as in Fig. 3, where

OATK =

{
− if ATK = CPA
ODec if ATK = CCA

.

We define the FFP-ATK advantage function of an adversary A against PKE as AdvFFP-ATK
PKE (A) =

Pr[FFP-ATKAPKE ⇒ 1].

Definition 3 (Injectivity of PKE schemes [5] ). A deterministic PKE scheme PKE = (KeyGen,
Enc,Dec) is ε-injective if Pr[Enc(pk,m) is not injective : (pk, sk) ← KeyGen()] ≤ ε. We say PKE is
injective if ε = 0.

In the security analysis of FO-KEMs, it will also be necessary to capture that adversaries might
be able to create valid ciphertexts without knowing the respective plaintext. This will involve the
following notion about the entropy (or spreadness) of the PKE scheme.

Definition 4 (γ-spreadness). We say that PKE is γ-spread iff for all key pairs
(pk, sk) ∈ supp(KeyGen) and all messages m ∈ M it holds that maxc∈C Pr[Enc(pk,m) = c] ≤ 2−γ ,
where the probability is taken over the internal randomness Enc.

2.2 Fujisaki–Okamoto (FO) Transformation

In this section, we recall the definition of the FO transform as the composition of the two following
transformations:

– the derandomizing T-transform that additionally adds a re-encryption check to the decryption
procedure; and

– the PKE-to-KEM Um-transforms that derive session keys from a randomly chosen message
m, which they encrypt using PKE. The two variants of Um vary in their responses to invalid
ciphertexts (U⊥m returns ⊥, while U6⊥m returns pseudo-random values).
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KeyGen′:
01 (pk, sk)←$ KeyGen
02 sk′ ← (sk, pk)
03 return (pk, sk′)

Enc′(pk,m):

04 c← Enc(pk,m; G′(m))
05 return c

Dec′(sk′ = (pk, sk), c):

06 m′ ← Dec(sk, c)
07 if m′ =⊥ or c 6= Enc′(pk,m′)
08 return ⊥
09 else
10 return m′

Fig. 4: Algorithms of T[PKE,G′].

KeyGen6⊥

01 (pk, sk)← KeyGen
02 s←$M
03 sk′ ← (sk, s)
04 return (pk, sk′)

Decaps⊥m(sk, c)

05 m′ ← Dec(sk, c)
06 if m′ = ⊥
07 return ⊥
08 else
09 return K ← G(m′)

Encapsm(pk)
10 m←$M
11 c← Enc(pk,m)
12 K ← G(m)
13 return (K, c)

Decaps6⊥m(sk′, c)

14 Parse (sk, s)← sk′

15 m′ ← Dec(sk, c)
16 if m′ = ⊥
17 return K ← G(s, c)
18 else
19 return K ← G(m′)

Fig. 5: ‘Explicit rejection’ KEM KEM⊥m = (KeyGen,Encapsm,Decaps⊥m), and ‘implicit rejection’ KEM
KEM 6⊥m = (KeyGen 6⊥,Encapsm,Decaps 6⊥m), obtained from PKE scheme PKE = (KeyGen,Enc,Dec).

The T-transform: To a PKE scheme PKE = (KeyGen,Enc,Dec) and a hash function G′ :M→
R, we associate PKE scheme

PKE′ = T[PKE,G′] = (KeyGen′,Enc′,Dec′) ,

with the algorithms defined in Fig. 4.
The Um-transforms: To a PKE scheme PKE = (KeyGen,Enc,Dec) and a hash function G :

M→K, we associate key encapsulation mechanism

KEM⊥m = U⊥m[PKE,G] = (KeyGen,Encapsm,Decaps⊥m) ,

KEM 6⊥m = U6⊥m[PKE,G] = (KeyGen 6⊥,Encapsm,Decaps 6⊥m)

where all algorithms are defined in Fig. 5.

Remark 5 (Rejection mode). In the literature, KEM⊥m is often called ‘KEM with explicit rejection’
because decapsulation returns the dedicated failure symbol ⊥ upon decryption failure. In turn,
KEM 6⊥m is often called ‘KEM with implicit rejection’. This variant differs only from KEM⊥m in that
it reacts to invalid ciphertexts by returning a pseudo-random value instead of the dedicated failure
symbol ⊥ (compare line 17 to line 07).

2.3 QROM helpers

We first recall one of the recent OWtH lemmata, Double-Sided OWtH [5, Lemma 5]. This lemma is
used in the security analysis of FO-like KEMs to argue that a hash value (the output session key)
is indistinguishable from random.
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Lemma 6 (Double-Sided OWtH). Let G,H : X → Y be random functions, let z be a random
value, and let S ⊂ X be a random set such that ∀x ∈ X \ S, G(x) = H(x). (G,H, S, z) may have
arbitrary joint distribution. Let AH be a quantum oracle algorithm. Let f : X →W ⊂ {0, 1}n be any
function, and let f(S) denote the image of S under f . Let Ev be an arbitrary classical event. We will
define another quantum oracle algorithm BG,H(z). This B runs in about the same amount of time as
A, but when A queries H, B queries both G and H, and also runs f twice. Let

Pleft = Pr[Ev : AH(z)], Pright = Pr[Ev : AG(z)], Pextract = Pr[BG,H(z) ∈ f(S)].

If f(S) = {w∗} is a single element, then B will only return ⊥ or w∗, and furthermore, |Pleft −
Pright| ≤ 2

√
Pextract.

3 Confirmation-code-augmented PKE Schemes

In Sect. 4, we will augment variants of FO to tie functionality to security, using confirmation codes.
This section provides the necessary formalism: in Sect. 3.1, we introduce the syntax and security
notions for PKE schemes with added confirmation codes. To ease the analysis of probabilistic PKE
schemes, in Sect. 3.2 we provide a confirmation-code-augmented counterpart of the derandomizing
T-transform (which is part of the overall FO transform) and prove the necessary security results.

3.1 Confirmation-code-augmented PKE

We start by introducing the syntax of confirmation-code-augmented PKE (which we formalize as
PKEC), then adapt relevant standard definitions to the augmented setting, and finally formalize the
main idea of confirmation codes as confirmation code unpredictability (cUP).

Definition 7 (Confirmation-code-augmented PKE). A confirmation-code-augmented PKE
scheme is a triplet of algorithms PKEC = (KeyGen,EncC,Dec), together with message space M,
encryption randomness space R and confirmation code space CD, such that

– EncC is an algorithm that takes as input a public key pk, a message m ∈ M and encryption
randomness r ∈ R, and outputs a ciphertext c, together with a confirmation code cd ∈ CD.

– (KeyGen,Enc,Dec) is a PKE scheme, where Enc denotes the algorithm which runs EncC and
outputs only c.

We will later leverage that randomized PKE schemes involve some function F that we will model
as a random oracle. We will make this oracle explicit in games. In such cases, we write KeyGenF,
EncFC, and EncF to indicate the algorithms have (oracle) access to function F. (Deterministic algorithm
Dec will not use F.)

While the definition might suggest that adding code confirmation introduces new computational
steps and hence require additional resources, we will be able to instantiate confirmation codes by
using intermediate values that were picked along the way while encrypting (see Sect. 5).

Definition 8 (Correctness and basic security for code-augmented PKE). We say that a
confirmation-code-augmented PKE scheme PKEC = (KeyGen,EncC,Dec) satisfies δ-correctness or a
security definition ( IND-CPA, OW-CPA, etc.) if its associated PKE scheme (KeyGen,Enc,Dec) does.

Confirmation Code Unpredictability (cUP) The idea of confirmation codes is that it should
be unlikely that a flawed implementation produces them by accident. Inspired by the “verifiable
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ExpcUP
PKEC,F,max(A)

01 (pk, sk)←$ KeyGenF()
02 (m, r)←$M×R
03 (c, cd)← EncFC(pk,m; r)

04 cd′ ← AF̄(pk, sk, c,m, r)
05 return Jcd = cd′K

F̄(x) �at most max many queries

06 return F(x)

Fig. 6: Confirmation code unpredictability experiment cUP for PKEC involving function F. The def-
inition for deterministic schemes simply drops the randomness r in lines 03 and 04.

verification” methodology of Fischlin and Günther [7], we formalize this property as confirmation
code UnPredictability (cUP), in a technically revised form.

Intuitively, our notion reflects the probability that a faulty implementation of FO re-encryption
(treated as adversary A) produces the same confirmation code as the original encryption call. For-
malizing this intuition turns out to be challenging. A first straw-man proposal for a cUP definition
may be to ask the adversary A to compute the confirmation code that a fresh run of EncC would have
produced, when just seeing the public key and the resulting ciphertext. This definition however per-
mits unsuited confirmation codes: the encrypted message itself, or the randomness used to encrypt
it, would be deemed good (“unpredictable”) confirmation codes. Yet, in the FO re-encryption setting
we are interested in, both message and randomness are recovered upon decapsulation, and a flawed
implementation can easily use them without running re-encryption. The problem is that, similar to
the setting of verifiable verification discussed in [7], the FO re-encryption process—by design—has
all the inputs to Enc required to compute the correct confirmation code, in particular the public key,
message, and randomness. (Arguably, it even has the secret key, given that re-encryption happens
inside the decapsulation algorithm.) If we were to provide those inputs to the cUP adversary A with-
out restrictions, A could trivially compute the correct confirmation code, which would thus render
the definition moot.

The question is hence how to restrict an cUP adversary in a way that captures accidentally skipped
re-encryption in an FO decapsulation implementation, and that accounts for the fact that A should
have access to all encryption inputs by design. Our proposal, formalized in Fig. 6, provides A with
all these inputs (namely, public and secret key, ciphertext, message, and encryption randomness).
The restriction is which computations A may perform; this is the technically novel revision of the
unpredictability approach of [7].

More specifically, we abstractly limit A’s access to a function F that is involved in the PKE
scheme to certain number max of calls, modeling F as a random oracle. If re-encryption and code
computation now involve F, the intuition behind limiting access to F is the following: an erroneous
implementation that skips re-encryption would not accidentally compute some inner values resulting
from calls to F that happen during that re-encryption step.6

For a concrete example, we will later see that the PKE encryption step in ML-KEM samples
error vectors using SHAKE as an extendable output function on the encryption randomness and
a counter. Modeling SHAKE as a random oracle, this allows us to use the entropy in the error
vectors that is lost due to rounding lower-order bits of the ciphertext as confirmation code. A flawed

6 Let us stress once more that we are not interested in capturing malicious implementations—which may
of course skip re-encryption but make targeted calls to F—but in capturing accidental implementation
errors.
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implementation skipping re-encryption would have to accidentally also call SHAKE on the right
inputs and compute the uncompressed ciphertexts to still produce the correct confirmation codes.
We argue that this approach indeed captures the intuition of unpredictable confirmation codes.

Definition 9 (cUP). Let PKEF
C = (KeyGen,EncC,Dec) be a PKE scheme that is confirmation-code-

augmented and involves some function F. We define the cUP experiment for PKEC, modeling F as a
random oracle and parameterized by a number max ∈ N in Fig. 6 and the cUP advantage function
of an adversary A against PKEC as

AdvcUP
PKEC,F,max(A) = Pr[ExpcUP

PKEC,F,max(A)⇒ 1] .

The experiment limits A’s access to F (via oracle F̄) to at most max queries.

3.2 cUP Security of the Confirmation-augmented T-Transform

Notably, the FO PKE-to-KEM transformation requires a deterministic PKE scheme. To enable
IND-CCA-secure KEMs based on probabilistic PKE schemes, the underlying PKE scheme first gets
derandomized, which is formalized via the T-transform.

PKE

IND-CPA/
OW-CPA

KEM

IND-CCA

FO⊥m = U⊥m ◦ T

FO 6⊥m = U6⊥m ◦ T

To enable our augmentation approach for probabilistic PKE schemes, one would thus have to
design a confirmation code for the T-derandomized scheme. Designing a code for the T-derandomized
scheme T[PKE] and justifying its unpredictability might be an annoying task, given that T[PKE] is
usually analyzed in the (quantum) ROM. It might be much preferable if one could simply design
a code for the underlying probabilistic scheme. To simplify the design process, we thus develop a
confirmation-code-augmented counterpart TC to the T-transform that behaves exactly like T, except
that it additionally turns the underlying confirmation code into one that is suitable for T[PKE]. We
then show that TC maintains code unpredictability.

PKEC

OW-CPA/
IND-CPA

PKEC

cUP

PKE′C

det. + cUP

TC

Thm. 11

TC is called TC because it resembles the derandomization transformation T from [12], except
that it derandomizes a code-augmented encryption algorithm EncC instead of a plain encryption
algorithm Enc, and except that it does not introduce a re-encryption check during decryption.

Definition 10 (Transformation TC). Let PKEC = (KeyGen,EncC,Dec) be a confirmation-code-
augmented PKE scheme with message space M and encryption randomness space R, and let G′ :
M→R be a hash function. To PKEC and a hash function G′ :M→R, we associate

TC[PKEC,G
′] = (KeyGen,Enc′C,Dec) .

Algorithm Enc′C is given in Fig. 7.
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Enc′C(pk,m)

07 (c, cd)← EncC(pk,m; G′(m))
08 return (c, cd)

Fig. 7: Derandomized code-augmented encryption algorithm Enc′C of TC[PKEC,G
′]

Code unpredictability of TC in the ROM. Intuitively, the following theorem states that TC
maintains code unpredictability, provided the underlying scheme is passively secure. We do not
consider quantum attackers: code unpredictability is just a stepping stone towards our ultimate
goal, noticeable correctness errors in faulty implementations (see next section). The intuition for cUP
thus is likewise that A models a “faulty-but-benign” implementation, and such implementations are
unlikely to use a quantum computer. (We note, however, that the result could also be obtained in
the quantum-accessible ROM.)

Theorem 11 (PKEC cUP and PKE OW-CPA/IND-CPA
ROM⇒ TC[PKE,G′] cUP). Let PKEC =

(KeyGen,EncC,Dec) be a confirmation-code-augmented PKE scheme, and let PKE = (KeyGen,Enc,
Dec) denote its associated plain PKE scheme. For any cUP adversary A against TC[PKEC,G

′], where
we model G′ as a random oracle, there exists a OW-CPA adversary B against T[PKE,G′] such that

AdvcUP
TC[PKEC,G′](A) ≤ AdvcUP

PKEC
(A) + AdvOW-CPA

T[PKE,G′](B) ,

and according to [12], there exists a OW-CPA adversary CO and an IND-CPA adversary CI against
PKE such that

AdvOW-CPA
T[PKE,G′](B) ≤

{
(qG + 1) ·AdvOW-CPA

PKE (CO)

3 ·AdvIND-CPA
PKE (CI) + 2qG+1

|M|
,

where qG denotes the number of queries made by A to the random oracle G′. The running time of
B, CO and CI is about that of A.

To a cUP adversary A trying to predict the code belonging to a ciphertext, there is not too much
of a difference between attacking PKEC or its derandomized version TC[PKEC,G

′]: in the random
oracle model, a challenge taken from TC[PKEC,G

′] only differs from a challenge taken from PKEC

if A queries G′ on the challenge plaintext, thereby breaking OW-CPA security of T[PKE,G′]. The
probability of breaking T[PKE,G′] was already analyzed in [12, Thms. 3.1, 3.2], we recall these results
in Appendix B for convenience. For completeness, we formally prove Thm. 11 in Appendix C.

4 Confirmation-code-augmented FO-Transform

In this section, we show how to slightly modify FO-like transforms in a way such that implementations
can no longer accidentally skip the re-encryption step without triggering functionality issues. We
start with formalizing the property we want to achieve, faulty implementation correctness (fCOR),
in Sect. 4.1. We then present our modified FO-like transforms for deterministic schemes in Sect. 4.2,
and show that they achieve the fCOR property. (We also show that our augmentation approach does
not degrade security: the modified transforms still achieve IND-CCA security with security bounds
that are similar to their non-modified predecessors.) Lastly, we do the same for probabilistic schemes
in Sect. 4.3.
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ExpfCOR
KEM,F,max(A)

01 (pk, sk)←$ KEM.KeyGenO,F()
02 (c,K0)←$ KEM.EncapsO,F(pk)
03 K′0 ← KEM.DecapsO,F(sk, c)
04 if K′0 6= K0 �correctness error
05 return 1 � is a trivial win

06 K1 ← AO,F̄(pk, sk, c)
07 return JK0 = K1K

F̄(x) �at most max many queries

08 return F(x)

ExpfCOR

KEM
6⊥
C
,F,max

(A)

09 (pk, (sk, h, z))←$ KEM6⊥C .KeyGenF()

�KEM 6⊥C .EncapsF(pk)
10 m←$M
11 (c, cd0)← PKEC.EncFC(pk,m)
12 K0 ← G(m,H(pk), cd0)

�KEM 6⊥C .DecapsF(sk, c)
13 m′ ← PKEC.Dec(sk, c)
14 (c′, cd′0)← PKEC.EncFC(pk,m′)
15 if m′ = ⊥ or c′ 6= c
16 K′0 ← J(z, c)
17 else
18 K′0 ← G(m′,H(pk), cd′0)

19 if K′0 6= K0 �correctness error
20 return 1 � is a trivial win

21 K1 ← AF̄(pk, sk, c)
22 return JK0 = K1K

Fig. 8: Left: Faulty implementation correctness experiment fCOR for a generic KEM KEM using ran-
dom oracle(s) O and F. Right: Faulty implementation correctness experiment fCOR for a UC6⊥m-FO-

transformed, confirmation-code augmented KEM KEM6⊥C . KEM 6⊥C uses a deterministic confirmation-
code-augmented PKE scheme PKEC (using random oracle F) and hash functions G, H, and J. (The
encapsulation and decapsulation code of KEMC are inlined). The version for a UCm-FO-transformed,
confirmation-code augmented KEM KEM⊥C can be derived analogously. The adversary A has unlim-
ited access to O but is allowed at most max queries to F (via the F̄ oracle).

4.1 fCOR: Formalizing that Faulty Implementations Are Noticed

We start by capturing the notion that an implementation cannot accidentally skip the re-encryption
step without triggering functionality issues. To that end, we define generic Faulty implementa-
tion CORrectness (fCOR) for KEMs below, see the left of Fig. 8. In the fCOR game, we model
the faulty-but-benign decapsulation implementation as an adversary A, whose goal is to output
the correct shared secret matching that of an honest encapsulation (c,K0) sampled according to
KEM.Encaps(pk). The adversary A is given pk, c, and also sk—clearly, without any restrictions, A
can trivially compute K0 by computing KEM.Decaps(sk, c). As for unpredictability, we restrict A’s
access to a function F used within the KEM algorithms and modeled as a random oracle, to at
most max queries. The intuition here is that F is essential for some part of the KEM’s decapsulation
algorithm, and limiting access to F means that the faulty-but-benign implementation does not fully
(or, correctly) implement decapsulation.

Our fCOR notion is generic and applies to any confirmation-code-augmented KEM. Here, we
are of course interested in FO-transformed, confirmation-code-augmented KEMs resulting from the
UC 6⊥m and UC⊥m transforms. On the right-hand side of Fig. 8, we thus inline a UC6⊥m-FO-transformed

KEM KEM 6⊥C for illustration (the case of UC⊥m is analogous). Inspecting the code corresponding to de-

capsulation, KEM 6⊥C .DecapsF(sk, c), shows that limiting A’s access to F translates to A—representing
the faulty-but-benign implementation—not being able to fully implement the re-encryption step. Put
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differently: for a UC6⊥m-FO-transformed KEM, our fCOR game models that re-encryption is faultily
implemented. (Recall again that we want to catch faulty (but benign) implementations; a malicious
implementation might of course implement re-encryption and its code computation correctly and
still accept any ciphertext.)

The probability of A winning the fCOR game measures the chance of a faulty-but-benign imple-
mentation passing the most basic correctness (e.g., interoperability) test: testing whether a generated
ciphertext encapsulating a shared secret decapsulates to the same secret. In contrast to “classical”
security advantage notions in cryptography, we are okay with “high” faulty correctness advantages
of A, e.g., 1/2 or 2/3: as long as there is no adversary that has “very high” advantage close to 1.
Assuming basic correctness and interoperability testing runs at least a few iterations, the faulty
implementation will exhibit noticeable correctness issues in practice.

Definition 12 (Faulty implementation correctness (fCOR)). Let PKEC be a deterministic
confirmation-code-augmented PKE scheme involving some function F, let G, H, and J be hash func-
tions, and let KEMC be KEM⊥C = UC⊥m[PKEC,G,H, J] or KEM6⊥C = UC6⊥m[PKEC,G,H, J] from Defini-
tion 13.

We define the fault implementation correctness ( fCOR) experiment for KEMC using F and pa-
rameterized by a number max ∈ N in Fig. 8 and the fCOR advantage function of an adversary A
against KEMC as

AdvfCOR
KEMC,F,max(A) = Pr[ExpfCOR

KEMC,F,max(A)⇒ 1] .

4.2 UC6⊥
m and UC⊥

m: Confirmation-code-augmented FO Constructions for
Deterministic PKE Schemes

We start by presenting our modified FO-like transform for deterministic schemes: we augment the
original Um-transforms for deterministic schemes from [12] by

– including a confirmation code into the key derivation procedure to achieve faulty implementation
correctness; and additionally,

– incorporating public-key identifiers, which reflects recent designs that target multi-user security;
– incorporating a re-encryption check, to prevent issues connected to rigidity [4].

We first define our augmented transformations UC⊥m (rejecting explicitly) and UC6⊥m (rejecting
implicitly).

Definition 13 (Confirmation-augmented Um-transforms UC6⊥m and UC⊥m). To a deterministic
confirmation-code-augmented public-key encryption scheme PKEC = (KeyGen,EncC,Dec) and hash
functions G, H, and J, we associate

KEM 6⊥C = UC6⊥m[PKEC,G,H, J] = (KeyGen 6⊥,Encaps,Decaps 6⊥) and

KEM⊥C = UC⊥m[PKEC,G,H, J] = (KeyGen⊥,Encaps,Decaps⊥) ,

where the respective algorithms are defined in Fig. 9 and Fig. 10.

Motivation of construction. The purpose of including cd in G’s input is to prevent an imple-
mentation which accidentally skips the re-encryption check from still agreeing with the sender on
the shared secret K, assuming that cd was suitably chosen.

We now show that the confirmation-code-augmented Um-transform indeed achieves our goal: as-
suming that the confirmation codes are sufficiently unpredictable, we show that if the corresponding
transformed KEM KEM⊥C = UC⊥m[PKEC,G,H, J] or KEM 6⊥C = UC 6⊥m[PKEC,G,H, J] is faultily imple-
mented and does not perform all F calls necessary for the re-encryption check, it will have noticeable
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KeyGen6⊥

01 (pk, sk)←$ KeyGen()
02 h← H(pk) ; z←$M
03 sk′ ← (sk, h, z)
04 return (pk, sk′)

EncapsC(pk)

05 m←$M
06 (c , cd )← EncC(pk,m)

07 K ← G(m,H(pk) , cd )

08 return (K, c)

Decaps 6⊥C (sk′ = (sk, h, z), c)

09 m′ ← Dec(sk, c)

10 (c′ , cd′ )← EncC(pk,m′)

11 K′ ← G(m′, h , cd′ )

12 K̄ ← J(z, c)
13 if m′ = ⊥ or c′ 6= c
14 return K̄
15 else return K′

Fig. 9: Algorithms of the implicitly rejecting KEM 6⊥C = (KeyGen 6⊥,EncapsC,Decaps 6⊥C ), built via the

confirmation-augmented counterpart UC 6⊥m to the transform used by ML-KEM. We highlight the

differences between ML-KEM’s transform and UC 6⊥m in violet boxes . As discussed in the text, we

decided to call our transformation UC6⊥m because it is similar in spirit to transformation U 6⊥m.

KeyGen⊥

01 (pk, sk)←$ KeyGen()
02 h← H(pk)
03 sk′ ← (sk, h)
04 return (pk, sk′)

EncapsC(pk)

05 m←$M
06 (c , cd )← EncC(pk,m)

07 K ← G(m,H(pk) , cd )

08 return (K, c)

Decaps⊥C (sk′ = (sk, h), c)

09 m′ ← Dec(sk, c)

10 (c′ , cd′ )← EncC(pk,m′)

11 K′ ← G(m′, h , cd′ )

12 if m′ = ⊥ or c′ 6= c
13 return ⊥
14 else return K′

Fig. 10: Algorithms of the explicitly rejecting KEM⊥C = (KeyGen⊥,EncapsC,Decaps⊥C ), built via our
confirmation-code-augmented UC⊥m transform. Again, as discussed, we call our transformation UC⊥m
because it is similar in spirit to transformation U⊥m. We highlight the the code augmentation in

violet boxes .

correctness errors. Intuitively, such an implementation will not be able to produce the proper code
and thus not manage to produce the right session key, unless it finds a suitable collision in G.

Theorem 14 (UC⊥m and UC6⊥m: cUP =⇒ fCOR). A UCm-transformed KEM from a PKE scheme
with confirmation-code unpredictability is noticeably incorrect under faulty implementation, when
modeling the key derivation function G as random oracle.

Concretely, let PKEC be an arbitrary confirmation-augmented PKE scheme that is δ-correct. For
any adversary A against the faulty implementation correctness game for KEMC being KEM⊥C =

UC⊥m[PKEC,G,H, J] or KEM 6⊥C = UC 6⊥m[PKEC,G,H, J] where we model G as an (observable, non-
programmable) random oracle with output length `G, function F, and parameter max, we construct
an adversary B against the unpredictability ( cUP) of PKEC, such that

AdvfCOR
KEMC,F,max(A) ≤ δ + AdvcUP

PKEC,F,max(B) + 2−`G .

For the short confirmation codes we propose for ML-KEM and HQC (cf. Sect. 5), the cUP ad-
vantage is essentially also the fCOR advantage for the resulting KEMs, as the former dominates the
bound above.

Proof. The proof applies identically to KEM 6⊥C and KEM⊥C .
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Let (c, cd0) = PKEC.EncFC(pk,m), K0 = G(m, cd0,H(pk)), m′ = PKEC.Dec(sk, c), and K ′0 = J(z, c)
or K ′0 = G(m′, cd′0,H(pk)) denote the values that were computed by the fCOR game (expanded for

KEM 6⊥C ) in lines 01–18 of Fig. 8, and let K1 be the shared secret that was output by A. For A
to win, we must have that (a) K ′0 6= K0 or (b) K0 = G(m, cd0,H(pk)) = K1. We note that (a)
constitutes a correctness error, so we can upper-bound the probability of (a) happening by δ. For
(b), we distinguish two cases:

– Case 1: A queries (m, cd0,H(pk)) to the random oracle G. This case induces an adversary B
against ExpcUP

PKEC,F,max that simulates F̄ by relaying to its own oracle, observes the queries A
makes to G, and upon the matching query (m, cd0,H(pk)) outputs cd0.

– Case 2: A does not query (m, cd0,H(pk)) to the random oracle G. In that case, K0 = G(m, cd0,
H(pk)) to A is an unknown random value of length `G. So A’s chance of guessing it with its
output K1 is 1/2`G .

Confirmation-code-augmentation does not degrade security. We conclude this subsection
by discussing that our augmentation approach does not degrade security: we show that the aug-
mented transform UC6⊥m still achieves IND-CCA security. We analyze transformation UC 6⊥m in ‘stan-
dalone’ mode, i.e., when UC6⊥m is applied to a generic deterministic PKE scheme that is confirmation-
augmented with deterministic code generation. We also discuss the security of other variants of these
transformations (Remark 15).

Intuition why UC6⊥m is secure when applied to deterministic schemes. Our transform
resembles transformation U6⊥m that was first analyzed in [12, Thm. 3.6]. The only differences between
UC6⊥m and U6⊥m are that when deriving session keys, UC6⊥m takes two additional inputs to G – H(pk) and
cd – and that UC6⊥m performs a re-encryption check. The re-encryption check prevents certain CCA
attacks (and thus only makes the transform stronger). The additional input H(pk) is a value that
everybody can compute, it thus does not weaken the resulting session key. While the additional input
cd does depend on its originating message m, this dependence is deterministic by our requirement
on EncC. It thus creates no additional information/attack surfaces when being hashed together with
m.

We make this intuition formal in Appendix D (for the ROM, see Thm. 26 in Appendix D.1, for
the QROM, see Thm. 27 in Appendix D.2). We defer to the appendix because these proofs essential
redo previous proofs for non-augmented U-transformations, in the ROM [13, Thm. 2.1.7] and the
QROM [5, Thm. 2].

PKE′

det + OW-CPA

KEMC

IND-CCA

UC 6⊥m

ROM Thm. 26/QROM Thm. 27

Remark 15 ( IND-CCA security for other code-augmented U-variants). One can obtain a proof for
the explicitly rejecting variant UC⊥m that recovers the ROM bound [12, Thm. 3.5] for U⊥m, using the
same reasoning as in the ROM proof for UC6⊥m. The QROM situation of variants with explicit rejection
mode so far is undetermined; we are not aware of any QROM result for standalone U-transforms in
explicit mode (without key confirmation) at the time of writing.

We also remark that the results for UC6⊥m can be recovered in a straightforward manner for variants
of UC6⊥m that

– omit H(pk) from the hash input since the hashing of pk has absolutely no influence on (single-
instance) IND-CCA security;

– include the ciphertext c into the hash input [5, Thm. 5].
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4.3 FOC 6⊥
m/FOC⊥

m: Confirmation-code-augmented FO Constructions for Probabilistic
PKE Schemes

We now present our transformations for probabilistic schemes.

Definition 16 (Confirmation-augmented transforms FOC 6⊥m/FOC⊥m). Transformations FOC 6⊥m/
FOC⊥m are the respective transformation UC6⊥m/UC⊥m, used in conjunction with TC. In other words, the
construction is exactly like the construction of UC6⊥m/UC⊥m (see Fig. 10), except that it derandomizes
encryption (in lines 06 and 10). Encapsulation and Decapsulation do not sample the randomness for
encryption at random, but instead derive it as G′(m) resp. G′(m′).

Next, we show that the confirmation-code-augmented FO-transforms indeed achieve our goal,
fCOR. This result is a corollary, as it immediately follows from combining the fCOR result for the
‘standalone’ transformation UC 6⊥m/UC⊥m (Thm. 14) with the result that TC maintains code unpre-
dictability (Thm. 11).

Corollary 17. A FOC 6⊥m-transformed KEM from a probabilistic PKE scheme with confirmation-code
unpredictability is noticeably incorrect under faulty implementation, when modeling the key derivation
function G as random oracle.

Concretely, let PKEC be an arbitrary confirmation-augmented PKE scheme that is δ-correct. For
any adversary A against the faulty implementation correctness game for KEMC being KEM 6⊥C =

FOC 6⊥m[PKEC,G,H, J,G
′] or KEM⊥C = FOC⊥m[PKEC,G,H, J,G

′], where we model G as an (observable,
non-programmable) random oracle with output length `G, function F, and parameter max, we con-
struct an adversary B against the unpredictability ( cUP) of PKEC, such that

AdvfCOR
KEMC,F,max(A) ≤ δ + AdvcUP

PKEC
(A) + AdvOW-CPA

TC[PKEC,G′](B) + 2−`G ,

and according to [12], there exists a OW-CPA adversary CO and an IND-CPA adversary CI against
PKE such that

AdvOW-CPA
TC[PKEC,G′](B) ≤

{
(qG + 1) ·AdvOW-CPA

PKE (CO)

3 ·AdvIND-CPA
PKE (CI) + 2qG+1

|M|
,

where qG denotes the number of queries made by A to the random oracle modeling G′. The running
time of B, CO and CI is about that of A.

Confirmation-code-augmentation does not degrade security. We again conclude this sub-
section by discussing that our augmentation approach does not degrade security: we show that the
augmented transform FOC 6⊥m still achieves IND-CCA security. We also discuss the security of other
variants of these transformations (Remark 18).

Intuition why FOC 6⊥m is secure. Our transform resembles the FO 6⊥m transform that was first
analyzed in [12]. The only differences are that when deriving session keys, FOC 6⊥m takes two additional
inputs to G – H(pk) and cd. Again, the additional input H(pk) is a value that everybody can compute
and thus does not weaken the resulting session key. While the additional input cd does depend on
its originating message m, this dependence is deterministic since FOC 6⊥m derandomizes EncC. It thus
creates no additional information/attack surfaces when being hashed together with m.

We make this intuition formal in Appendix D (for the ROM, see Cor. 29 in Appendix D.3, for the
QROM, see Thm. 30 in Appendix D.4). We again defer to the appendix because Cor. 29 is obtained
by combining the UC6⊥m result, Thm. 26, with previous results about T that were given in [12], and
QROM Thm. 30 essential redoes a previous proof for the non-augmented FOm-transformations [14].
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PKE

OW-CPA/
IND-CPA

KEMC

IND-CCA

FOC 6⊥m = UC 6⊥m ◦ TC

ROM Cor. 29, QROM Thm. 30

Remark 18 ( IND-CCA security for other code-augmented FO-variants). In the previous subsection,
we also discussed (see Remark 15) the security of other variants of our construction for deterministic
schemes, UC. Unlike for UC⊥m, however, transformation FO⊥m is known to have a QROM security
proof [14] that achieves the same bound as FO 6⊥m. They essentially have the same proof, one can thus
also obtain a QROM bound for FOC⊥m.

The remarks about alternative hash inputs also apply for our construction for probabilistic
schemes, FOC.

5 Application to Post-quantum KEMs

We now turn to augmenting real-world post-quantum KEM schemes with confirmation codes that
are unpredictable and enable catching faulty implementations of decapsulation through noticeable
correctness errors. We discuss and analyze proposals for both ML-KEM, standardized by NIST in
FIPS 203 [21], as well as HQC [1], a Round 4 submission to NIST’s PQC standardization process.

5.1 ML-KEM

Recall that ML-KEM operates on elements of Rq = Z3329[X]/(X256+1). In the PKE scheme underly-
ing ML-KEM, the encryption process pseudorandomly samples error terms e1 ∈ Rkq and e2 ∈ Rq (for

k ∈ {2, 3, 4} depending on the security level). These error terms are used to compute a vector u ∈ Rkq
of polynomials and a polynomial v ∈ Rq. The polynomials in u and v are then compressed into the
final ciphertext (c1, c2). This compression entails a loss of information by rounding coefficients mod-
ulo q = 3329 to a smaller range, namely modulo 210 or 211 (for u) or 24 or 25 (for v) (depending on
the security level). We leverage this information loss for our confirmation-code-augmented version
of ML-KEM, denoted ML-KEMC. In doing so, we will model the PRF used to derive the error terms
as the constrained function F in the cUP security notion.

Adding confirmation codes to ML-KEM’s PKE. First, we specify how to augment the PKE
encryption algorithm of ML-KEM with a confirmation code; the resulting encryption algorithm
ML-KEMC.PKEC.EncC is given in Fig. 11 (the other PKE algorithms remain unchanged). More
specifically, parameterized by S ⊆ {1, . . . , 256}, ML-KEMC.PKEC[S].EncC outputs as confirmation
code cd the coefficients at positions in S of each term of the uncompressed ciphertext values u ∈ Rkq
and v ∈ Rq (see Fig. 11, line 24).

Using a small set S helps reduce the overhead of including cd in the KEM key derivation. We show
in the following theorem that a very small set S—just a few coefficients from each uncompressed ci-
phertext term—already suffices for ML-KEMC.PKEC[S] to achieve meaningful confirmation-code un-
predictability (cUP). Recall that we do not need cryptographically small advantages for confirmation-
code unpredictability: a cUP advantage bound noticeably below 1 already suffices to ensure that a
KEM built via the confirmation-code-augmented FO-transforms in Sect. 4 has noticeable correctness
errors upon faulty implementation. For ML-KEMC.PKEC[S], we already obtain a cUP advantage up-
per bound of ≈ 2/3 for |S| = 2 and max = k (i.e., missing only one of the k + 1 error polynomials in
e1 ∈ Rkq , e2 ∈ Rq). Note that we allow parameterizing ML-KEMC.PKEC[S] with a set of coefficient
positions for generality; in practice, slicing off a consecutive sequence of coefficients at the start or
end of each polynomial is sufficiently efficient, as our performance evaluation in Sect. 5.3 shows.
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ML-KEMC.PKEC[S].EncC(pk ∈ B12·k·n/8+32,m ∈ B32; r ∈ B32)

01 N ← 0

02 parse t̂ from pk
03 parse ρ from pk
04 Â← (pseudorandomly generate matrix Â ∈ (Z256

q )k×k from ρ)
09 y← (pseudorandomly generate y ∈ (Z256

q )k from r; set N ← k)

13 for i from 0 to k − 1: �generate e1 ∈
(
Z256
q

)k
14 e1[i]← SamplePolyCBDη2(PRFη2(r,N))
15 N ← N + 1
16 endfor
17 e2 ← SamplePolyCBDη2(PRFη2(r,N)) �generate e2 ∈ Z256

q

18 ŷ← NTT(y)

19 u← NTT−1
(
Â
T ◦ ŷ

)
+ e1

20 µ← Decompress1(ByteDecode1(m))

21 v ← NTT−1
(
t̂
T ◦ ŷ

)
+ e2 + µ

22 c1 ← ByteEncodedu(Compressdu(u))
23 c2 ← ByteEncodedv (Compressdv (v)

�confirmation code:
�uncompressed ciphertext coefficients at positions S ⊆ {1, . . . , 256} of each term

24 cd← (u[1][S], . . . ,u[k][S], v[S])

25 return
(
c = c1‖c2, cd

)
Fig. 11: Confirmation-code-augmented version ML-KEMC.PKEC[S] of ML-KEM’s PKE encryption
algorithm, with the length of the confirmation code parameterized by S ⊆ {1, . . . , 256}. Changes

introducing confirmation codes are higlighted in violet boxes . In our analysis, we model PRF as
(extendable-output) random oracle F, where PRFη denotes a call producing a (64 · η)-byte output;
for all parameter sets, η2 = 2. The line numbering follows the ML-KEM specification in NIST
FIPS 203 [21, Algorithm 14, p. 30]. Some details not relevant to this paper are omitted; see the
FIPS 203 specification for details.

Using confirmation codes in ML-KEM’s encapsulation/decapsulation. We now explain
how to integrate the confirmation-code-augmented PKE scheme into the encapsulation and decap-
sulation algorithms of ML-KEM to obtain our confirmation-code-augmented version ML-KEMC.

As shown in Fig. 12, ML-KEM uses a variant of the FO 6⊥m = U6⊥m ◦ T transform, deriving ran-
domness and shared secret jointly as (K, r) ← SHA3-512(m‖SHA3-256(pk)) before re-encryption.
Applying our confirmation-code-augmented transform FOC 6⊥m = UC6⊥m ◦TC from Sect. 4, we separate
the derivation of randomness and shared secret, to include the confirmation code in the latter (ob-
tained through re-encryption). We thus replace the single SHA3-512 call with two calls of SHA3-256;
see Fig. 12 for the result. Note that it is important to ensure domain separation between these
calls of SHA3-256 and other SHA3-256 calls in ML-KEM, such as the hashing of pk, for example by
using labels or ensuring inputs are different length [3]; this requires carefully checking the size of the
confirmation code relative to the pk size. When the confirmation code is chosen to be shorter than
736 bytes (and non-empty), domain separation is achieved due to distinct input lengths for each call,
namely 800–1568 bytes for the call hashing pk, 64 bytes for the call deriving r, and 65–799 bytes for
the call deriving K.
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ML-KEM.Encaps internal(pk,m ∈ B32)

01 (K, r)← SHA3-512(m‖SHA3-256(pk))
02 c← ML-KEM.PKE.Enc(pk,m; r)
03 return (K, c)

ML-KEMC.Encaps internal(pk,m ∈ B32)

04 r ← SHA3-256 (m‖SHA3-256(pk))

05 (c , cd )← ML-KEMC.PKEC.EncC (pk,m; r)

06 K ← SHA3-256(m‖SHA3-256(pk)‖cd)

07 return (K, c)

ML-KEM.Decaps internal(sk′ = (sk, h, z), c)

08 m′ ← ML-KEM.PKE.Dec(sk, c)
09 (K′, r′)← SHA3-512(m′‖h)
10 K̄ ← SHAKE256(z‖c)
11 c′ ← ML-KEM.PKE.Enc(pk,m′; r′)
12 if c 6= c′

13 return K̄
14 return K′

ML-KEMC.Decaps internal(sk′ = (sk, h, z), c)

15 m′ ← ML-KEM.PKE.Dec(sk, c)

16 r′ ← SHA3-256 (m′‖h)

17 (c′ , cd′ )← ML-KEMC.PKEC.EncC (pk,m′; r′)

18 K′ ← SHA3-256(m′‖h‖cd′)

19 K̄ ← SHAKE256(z‖c)
20 if c 6= c′

21 return K̄
22 return K′

Fig. 12: Internal encapsulation (top) and decapsulation (bottom) algorithms of ML-KEM [21, Al-
gorithm 17, p. 33] (left) and of our confirmation-code-augmented version ML-KEMC following the
FOC 6⊥m = UC 6⊥m ◦ TC transform (right).We highlight the differences between ML-KEM and ML-KEMC

in violet boxes .

Security evaluation. The following theorem shows that ML-KEMC.PKEC[S] achieves confirmation-
code unpredictability (cUP), when ML-KEM’s PRF is modeled as a random oracle to which calls by
the faulty implementation are constrained.

Theorem 19 (ML-KEMC.PKEC is cUP). Let ML-KEMC.PKEC[S] be the confirmation-code-augmented
PKE scheme of ML-KEMC from Fig. 11 involving function F = PRF, using uncompressed ciphertext
coefficients from the positions S ⊆ {1, . . . , 256} as confirmation code. Let A be an adversary in the
cUP experiment making at most max queries to its F̄ oracle. If we make an additional uniformity
assumption on certain values in ML-KEM (stated in the proof), then

AdvcUP
ML-KEMC.PKEC[S],PRF,max(A) ≤ 2−he1

·|S|·(k+1−max),

where he1 is as shown in Table 1. Without the additional uniformity assumption, for ML-KEM-512
and ML-KEM-768, the advantage of A is upper-bounded by

p|S| =

|S|(k+1−max)∑
i=0

(
|S|(k + 1−max)

i

)(
2

16

)|S|(k+1−max)−i(
14

16

)i
· 2−h·i, (1)

where h ≈ 0.322. Calculated values for the bound in each case for short (|S| = 2) and full (|S| =
n = 256) confirmation codes are shown in Table 1.

Proof. We observe that PRF is used k+1 times in ML-KEMC.PKEC[S].EncC, to compute e1[1], . . . , e[k]
as well as e2.7 This means for any max ≤ k, A is missing at least one of the k + 1 error terms.

7 Strictly speaking, PRF is also used to generate y. But since in the subsequent analysis we will conservatively
assume A knows y, we can also assume w.l.o.g. that A does not spend its limited F̄ queries on computing y.
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Table 1: Calculated error coefficient entropy and confirmation code guessing probabilities for
ML-KEM. Conservatively assumes the adversary is allowed max = k (i.e., all but one) evaluations
of PRF. For short (|S| = 2) codes, the confirmation code guessing probability is essentially also
the fCOR advantage upper bound, as the other terms in the bound of Thm. 14 are negligible in
comparison.

Scheme
Conditional entropy Conf. code guessing probability

of e1 coeff. of e2 coeff. Short (|S| = 2) Full (|S| = 256)
(he1) (he2) (p2) (p256)

Assuming uniform z

ML-KEM-512 1.2733 2.0188 0.1712 2−325

ML-KEM-768 1.2733 2.0188 0.1712 2−325

ML-KEM-1024 0.6407 2.0069 0.4114 2−164

Worst-case analysis

ML-KEM-512 0.3219 0.3219 0.6806 2−71

ML-KEM-768 0.3219 0.3219 0.6806 2−71

Let u = NTT−1
(
Â
T
◦ ŷ
)

+e1 and v = NTT−1
(
t̂
T ◦ ŷ

)
+e2+µ be the uncompressed ciphertexts

(as computed during challenge encryption) and c = c1‖c2 the challenge ciphertext. Since A knows

the secret key sk, we conservatively assume it can compute NTT−1
(
Â
T
◦ ŷ
)

, NTT−1
(
t̂
T ◦ ŷ

)
,

and µ. Using its F̄ oracle, A can furthermore compute max ≤ k many of the k + 1 error vectors
e1[1], . . . , e[k], e2. That is, A knows the compressed ciphertext as well as all components of the
uncompressed ciphertext except k+ 1−max error vectors. For each of the k+ 1−max missing error
vectors, A needs |S| coefficients to construct the complete confirmation code.

Each coefficient of either u or v is of the form z+ e, where z is some element Zq and e is sampled
according to the ML-KEM error distribution, which is the following centered binomial distribution:
0 with probability 6/16, ±1 each with probability 4/16, ±2 each with probability 1/16.

The core of the problem is to compute the conditional entropy of a single error coefficient e given
z ∈ Zq and the compressed value c = Compressd(z + e mod q), where Compressd(x) = d(2d/3329) ·
xc mod 2d, with d = du = 10 for compressing u and d = dv = 4 for compressing v in both
ML-KEM-512 and ML-KEM-768, and du = 11 and dv = 5 correspondingly for ML-KEM-1024.

Since z takes on values in {0, . . . , 3328} and e takes on values in {0,±1,±2}, the space of all
possibilities can be efficiently explored numerically. We report bounds for two different analyses: an
average-case analysis assuming uniform z, and a worst-case analysis not assuming uniform z.

Assuming uniform z. If we were willing to make the assumption that the distribution of z is uniform
on Z3329, then it would suffice to compute the entropy of entries of e1 or e2 given (z, c = Compressd(z+
e mod q)), namely:

H(Y |X) = −
∑

(z,c)∈X,e∈Y

Pr[X = (z, c), Y = e] log2

Pr[X = (z, c), Y = e]

Pr[X = (z, c)]
.

As observed in Table 1, for all ML-KEM parameters, the conditional entropy he1 in a coefficient of
e1 is less than or equal to the conditional entropy he2 in a coefficient of e2, so the optimal adversary
would use its limited F̄ queries to learn e2 first, and then any more of e1 it can. Since a confirmation
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code using subset S involves |S| coefficients from each error polynomial, of which there are k in e1

and 1 more in e2, and these are all independent of each other, the adversary’s success probability is
at most

p|S| =
(
2−he1

)|S|·(k+1−max)
= 2−he1

·|S|·(k+1−max).

The results of calculating this numerically for ML-KEM are shown in the “Assuming uniform z”
section of Table 1, for the conservative case that the adversary is allowed max = k (i.e., all but one)
queries to F̄.

Worst-case analysis, not assuming uniform z. Since the cUP security notion assumes that the secret
key is known to the adversary, we cannot employ the decisional LWE assumption to justify z being
uniform. In practice, z appears quite close to uniform, but we can also obtain looser but still quite
acceptable bounds for ML-KEM-512 and ML-KEM-768 without making any assumptions on the
distribution of z.

There are certainly some coefficients for which the conditional entropy of the error, and hence
the uncompressed ciphertext coefficient, is 0: these are (z, c) combinations for which there is a single
way of building that combination. We observe (through exhaustively searching the combination
space) that, for ML-KEM-512 and ML-KEM-768, the combinations for which this can occur are
only combinations in which the error takes on values ±2, and a simplification would be to consider
solely combinations build from error terms in {−1, 0, 1}. Unfortunately, for ML-KEM-1024, these
degenerate combinations can occur with any error value, so we do not proceed with this analysis for
ML-KEM-1024.

The conditional min-entropy for cases when the error is in {−1, 0, 1} is

Hmin(Y |X) = − log2 max
(z,c)∈X,e∈{−1,0,1}

Pr[Y = e|X = (z, c)].

As seen in Table 1, for ML-KEM-512 and ML-KEM-768, the conditional min-entropy is the same for
coefficients of both e1 and e2: h = he1 = he2 ≈ 0.322. Hence it does not matter whether an adversary
uses their limited F̄ queries to learn e1 or e2.

Noting that the degenerate case of error ±2 occurs only 2/16 of the time, we can compute the
probability of adversary guessing the confirmation code for the short confirmation code and the full
confirmation code. For a confirmation code with subset S, the adversary’s success probability is a
weighted sum of the success probability given that i coefficients involve errors in {−1, 0, 1} times the
probability that i coefficients take on such error values, which is given in Equation (1). The results
of calculating this numerically for ML-KEM-512 and ML-KEM-768 are shown in the “Worst-case
analysis” section of Table 1, again conservatively assuming that the adversary is allowed max = k
(i.e., all but one) queries to F̄.

5.2 HQC

We briefly recall some necessary preliminaries. HQC operates on elements that can be interchangeably
represented as bit strings (row vectors) or polynomials in R = F2[X]/(Xn−1). We denote Rw as the
space of binary strings with length n and Hamming weight w that is, strings with w non-zero entries.
For u,v ∈ R, we define the product z = u · v as zk =

∑
i+j≡k mod n uivj for k ∈ {0, 1, ..., n− 1}.

We define three helper functions that each take as input a string x and an integer l: truncate(x, l)
returns the truncation of x by l bits, firstBytes(x, l) returns the first l bytes of x, and lastBytes(x, l)
returns the last l bytes of x.

We make use of Proposition 3.1.1 from [2].
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HQCC.PKEC.EncC(pk,m ∈ F128
2 ; r)

01 r1 ← PRF(r, wr, n, 1)
02 r2 ← PRF(r, wr, n, 2)
03 e← PRF(r, we, n, 3)
04 u← r1 + h · r2

05 v← truncate(mG + s · r2 + e, `)

06 cd← lastBytes(mG + s · r2 + e, 1)

07 c← (u,v)

08 return
(
c, cd

)

HQCC.Encaps(pk)

09 salt←$ F128
2

10 m←$ F128
2

11 θ ← G(m‖firstBytes(pk, 32)‖salt)
12 (c , cd )← HQCC.PKEC.EncC(pk,m; θ)

13 K ← G(m, c , cd )

14 return (K, c = c‖salt)

HQCC.Decaps(sk, c = c‖salt)
15 m′ ← HQC.Dec(sk, c)
16 θ′ ← G(m′‖firstBytes(pk, 32)‖salt)
17 (c′ , cd′ )← HQCC.PKEC.EncC(pk,m′; θ′)

18 K ← G(m, c , cd′ )

19 K̄ ← G(z, c)
20 if m′ = ⊥ or c 6= c′ :
21 return K̄
22 return K

Fig. 13: Confirmation-code-augmented version HQCC of HQC, with the underlying confirmation-
code-augmented encryption algorithm HQCC.PKEC.EncC using function PRF. Changes introducing

confirmation codes are highlighted in violet boxes .

Proposition 20. Let x = (x0, ..., xn−1) be a random vector chosen uniformly among all binary
vectors of length n and weight w and let r = (r0, ..., rn−1) be a random vector chosen uniformly
among all binary vectors of length n and weight wr and independently of x. Then denoting z = x · r
we have that for every k ∈ {0, ..., n − 1} the kth coordinate zk of z is Bernoulli-distributed with

parameter p̃ = Pr[zk = 1] =
1(

n
w

)(
n
wr

) ∑1≤`≤min(w,wr)
` odd

(
n
`

)(
n−`
w−`
)(
n−w
wr−`

)
.

Adding confirmation codes to HQC’s PKE. We augment the PKE encryption algorithm of HQC
with a confirmation code and, in encapsulation and decapsulation, embed it into the KEM key
derivation as illustrated in Fig. 13 (the other algorithms remain unchanged). The randomness for
encryption is derived from the message m and further inputs as θ ← G(m‖firstBytes(pk, 32)‖salt)
using SHAKE. Encryption then pseudorandomly generates vectors r1, r2, e of appropriate weight
from θ′; this is internally achieved by pseudorandomly generating uniform byte strings using SHAKE
and then deriving vectors of the required weights. These vectors are used along with pk = (h, s)
to compute ciphertext c = (u,v) with u = (r1 + h · r2) and v = truncate(mG + s · r2 + e, `). We
model skipping re-encryption as skipping all lines where random values are generated from θ—in
other words, the generation of r1, r2, e. We use the last byte of mG + s · r2 + e (i.e., the v part
of the ciphertext before truncation) as confirmation code, leveraging that the truncation by ` bits
for the ciphertext, where ` depends on the HQC parameter set. We show that these truncated bits
cannot be guessed with high probability without knowing r1, r2, or e.

Theorem 21. Let HQCC.PKEC be the confirmation-code-augmented PKE scheme of HQC using
the EncC algorithm from Fig. 13 involving function F = PRF. Let A be an adversary in the cUP
experiment making no (max = 0) queries to its F̄ oracle. Then, using the heuristic assumption that
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the coordinates of e are independent, as was done in [1, 2], we obtain

AdvcUP
HQCC.PKEC,PRF,0(A) ≤ 2−min(`,8).

For our proposed HQC confirmation code, the unpredictability advantage above is essentially
also the fCOR advantage upper bound, as the other terms in the bound of Thm. 14 are negligible in
comparison.

Proof. Consider v = truncate(mG + s · r2 + e, `). The length of s · r2 is n bits, which is larger by
` bits than the length of mG. Thus, the truncation of v involves truncating ` bits of s ·r2 +e, where
s = x + h · y, for secret values x,y ∈ Rw. We show that the distribution of the last bits coefficients
of v is uniform. Consider

s · r2 + e = x · r2 + h · y · r2 + e.

Note that h is uniformly distributed, and e is uniformly distributed over strings of weight we. As
was done in [1,2], we make the simplifying assumption that the coordinates of e are independent, and
thus Pr[ek = 1] follows a Bernoulli distribution with parameter p = w

n . 8 Let x̄ = x ·r2 and ȳ = y ·r2.
From Proposition 20 we have that each coordinate of x̄ and ȳ follows a Bernoulli distribution with
the following parameter p̃ describing the distribution of coefficients:

p̃ =
1(

n
w

)(
n
wr

) ∑
1≤`≤min(w,wr)

` odd

(
n

`

)(
n− `
w − `

)(
n− w
wr − `

)
.

Now, consider the output distribution of h · ȳ. We have

(h · ȳ)k =
∑

i+j≡k mod n

hiȳj .

Since h follows a uniform distribution, and ȳ follows a Bernoulli distribution with parameter p̃

we have that Pr[hiȳj = 1] =
p̃

2
. Then the probability that

∑
i+j≡k mod n hiȳj = 1, is described

by the probability that after k + 1 independent Bernoulli trials, the number of successes is odd. A
‘success’ in this case occurs with probability p̃

2 . We have

Pr[(h · ȳ)k = 1] =
1

2
− 1

2
(1− p̃)k+1

.

Now we consider the distribution of z = x · r′2 + h ·y · r′2 + e′. We consider Pr[zk = 1]. Here, zk is
the sum modulo 2 of 3 terms, each distributed according to an independent Bernoulli distribution.
Thus we have

Pr[zk = 1] = Pr[x · r′2 = 1,h · y · r′2 = 1, e′k = 1]

+ Pr[x · r′2 = 1,h · y · r′2 = 0, e′k = 0]

+ Pr[x · r′2 = 0,h · y · r′2 = 1, e′k = 0]

+ Pr[x · r′2 = 0,h · y · r′2 = 0, e′k = 1].

We observe computationally Pr[zk = 1] converges to 0.5. Concretely, we have

– For HQC-128, n = 17, 699, w = 66, we = wr = 75, p̃ = 0.2157612, and ` = 5 and Pr[zk = 1] = 0.5
for k > 140.

8 In reality, since e is of a fixed low weight, Pr[ek = 1] depends on the weight of (e0, ..., ek−1).
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Table 2: Performance impact of confirmation code on ML-KEM and HQC.
Measured with liboqs v0.12.1-dev using mlkem-native [25] aarch64 on an Apple Silicon M2 Max processor.

Algorithm Short conf. code Full-length conf. code
Size (bytes) Slowdown Size (bytes) Slowdown

ML-KEM-512
Encaps

12
3.4%

1152
23.6%

Decaps 3.1% 23.6%

ML-KEM-768
Encaps

16
2.1%

1536
20.5%

Decaps 2.1% 15.0%

ML-KEM-1024
Encaps

20
1.2%

1920
14.1%

Decaps 1.6% 12.2%

HQC-128 Encaps
1

0.09%
— —

with bug Decaps 0.25%

HQC-128 Encaps
1

0.13%
— —

bug fixed Decaps 0.19%

– For HQC-192,n = 35, 851, w = 100, we = wr = 114, p̃ = 0.2362947, and ` = 11, and Pr[zk =
1] = 0.5 for k > 125.

– For HQC-256, n = 57, 637, w = 131, we = wr = 149, p̃ = 0.2468457, and ` = 37, and Pr[zk =
1] = 0.5 for k > 119.

We conclude that the last ` bits of s · r2 + e used as confirmation code are uniformly random,
and independent of the view of the A and so

AdvcUP
HQCC.PKEC,PRF,0(A) ≤ 1

2min(`,8)
.

5.3 Performance Evaluation

ML-KEM. We adapted the ML-KEM implementation in liboqs [22, 27] (based on mlkem-native

[25]) to include confirmation codes as specified in Figs. 11 and 12. We evaluated two options: a
short confirmation code, using the first and last coefficient of uncompressed ciphertext vector for the
confirmation code (i.e., S = {1, 256}), and a full-length confirmation code (i.e., S = {1, . . . , 256}).
Our performance evaluation (see Table 2) shows that using the short confirmation code leads to a
slow-down in the encapsulation and decapsulation algorithms of at most 3.4% across ML-KEM-512,
ML-KEM-768, and ML-KEM-1024. Using the entire uncompressed ciphertext for the confirmation
code has a much more significant performance impact due to the cost of hashing such a long input
into key derivation, relative to the otherwise low cost of ML-KEM encapsulation/decapsulation.
Table 2 shows the performance impact in more detail. Fortunately, as we have shown in Thm. 19,
the short confirmation code (|S| = 2) already suffices to obtain a cUP advantage upper bound that
ensures faulty implementations will fail noticeably (with probability about 1/3, see Table 1) in each
test run.

HQC. We likewise augmented the HQC implementation in liboqs [22, 27] with confirmation codes
as specified in Fig. 13 and evaluated it for the HQC-128 parameter set. Using the last byte of as
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confirmation code (for efficiency, given all the APIs are byte-oriented), we measured a slow-down
in encapsulation and decapsulation of at most 0.25%. We applied confirmation codes to both the
version of code with the re-encryption bug [23] and the patched version with the bug fixed, and
experimentally confirmed that our approach works: the 1-byte confirmation code indeed detected
the flaw in the buggy implementation, reliably causing the basic correctness tests of liboqs to fail.

6 Conclusion and Discussion

In this paper, we bring the methodology of cryptographically tying security to functional correct-
ness through confirmation codes, proposed by Fischlin and Günther [7] in the form of “verifiable
verification” for digital signatures, to the realm of key encapsulation mechanisms (KEMs). We devel-
oped a modified Fujisaki–Okamoto (FO) transform that binds re-encryption to functionality, making
the correct implementation of the FO re-encryption verifiable for implementers. The core idea is
to export an unpredictable confirmation code from the underlying PKE scheme and include it in
the key derivation. We showed that this approach ensures that a faulty implementation which skips
re-encryption will be noticeably incorrect, and hence exposed through basic correctness tests. We
applied this technique to ML-KEM and HQC to present confirmation-code-augmented variants that
leverage the entropy lost through ciphertext compression or truncation with negligible overhead, and
experimentally confirmed that this approach successfully surfaces the re-encryption implementation
flaw in HQC’s reference implementation.

A permanent safety net or a temporary bug testing technique? One could see verifiable
decapsulation as a property that should be permanently integrated into KEM designs. In this way,
one not only captures local implementation errors before deployment, but can also detect flaws in
a remote KEM implementation when used, e.g., within a larger protocol. Also, any future code
modifications would automatically benefit from the technique, providing a permanent safety net.

On the other hand, one could see verifiable decapsulation as a bug-testing technique. In this
view, one would use confirmation codes in pre-deployment version of code for enhanced correctness
tests. The deployed code version would then remove the confirmation codes again, reverting to
the standard KEM scheme. This approach avoids the overhead introduced by confirmation codes.
However, maintaining two implementations that differ in lower-level cryptographic instructions may
itself be prone to errors, and skipping such a step could be a development “optimization” taken by
a busy implementer.

We tend to view verifiable decapsulation as a design principle permanently embedded in KEMs,
and see our experimental results on ML-KEM and HQC as supporting this, demonstrating that the
overhead introduced by confirmation codes is very small.

Future work. In order to model how a faulty implementation might behave, we presented a no-
tion of confirmation code unpredictability that gave the adversary access to all inputs and instead
limited its access to some internal function F. While this approach avoids trivial confirmation codes
possible in [7] (like the message which is PKE-encrypted) and captures an incomplete re-encryption
implementation step well in the KEMs we study, not every cryptographic scheme admits identify-
ing such function F, limiting access to which would match intuition. Not all post-quantum KEMs
we looked at admit natural confirmation codes in our paradigm. For example, FrodoKEM [20] does
not use ciphertext compression or truncation like ML-KEM or HQC which we leveraged for obtain
unpredictable confirmation codes. It would be interesting to explore different formalisms for re-
stricting which computations a faulty implementation may perform, through limiting input access,
computation time, etc.
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Game OW-CPAPKE(A):
01 (pk, sk)← KeyGen
02 m∗←$M
03 c∗ ← Enc(pk,m∗)
04 m′ ← A(pk, c∗)
05 return Jm′ = mK

Game IND-CPAPKE(A):
06 (pk, sk)← KeyGen
07 b←$ {0, 1}
08 (m0,m1, st)← A1(pk)
09 c∗ ← Enc(pk,mb)
10 b′ ← A(pk, c∗, st)
11 return Jb′ = bK

Fig. 14: OW-CPA and CPA game for PKE scheme PKE.

A.2 Security Notions for Key Encapsulation Mechanisms

Here, we recall the standard security notions for key encapsulation: Indistinguishability under Chosen
Ciphertext Attacks (IND-CCA).

Definition 23 (IND-CCA). We define the IND-CCA game as in Fig. 15 and the IND-CCA advantage
function of an adversary A (with binary output) against KEM as

AdvIND-CCA
KEM (A) = |Pr

[
IND-CCAAKEM ⇒ 1

]
− 1

2
| .

Game IND-CCAKEM:
01 (pk, sk)← KeyGen
02 b←$ {0, 1}
03 (K0, c

∗)← Encaps(pk)
04 K1←$K
05 b′ ← ADecaps(pk, c∗,Kb)
06 return Jb′ = b∗K

Decaps(c 6= c∗):
07 K ← Decaps(sk, c)
08 return K

Fig. 15: IND-CCA game for KEM = (KeyGen,Encaps,Decaps).

B Recalling the OW-CPA bounds for the T-transform given in [12]

We now restate [12, Thms. 3.1 and 3.2]. In the theorems, PKE1 denotes the PKE scheme T[PKE,G],
and OW-CPA-PCVA denotes OW-CPA security even in the presence of two additional oracles PCO
and CVO. Simplifying the given bounds as indicated in Thm. 11 by dropping the additional oracles
is straightforward, but we still detail this below the theorems for the sake of completeness.

Theorem 24 ([12, Theorem 3.1]). If PKE is δ-correct, then PKE1 is δ1-correct in the random
oracle model with δ1(qG) = qG · δ. Assume PKE to be γ-spread. Then, for any OW-CPA-PCVA ad-
versary B that issues at most qG queries to the random oracle G, qP queries to a plaintext checking
oracle PCO, and qV queries to a validity checking oracle CVO, there exists an OW-CPA adversary
A such that

AdvOW-CPA-PCVA
PKE1

(B) ≤ (qG + qP ) · δ + qV · 2−γ + (qG + qP + 1) ·AdvOW-CPA
PKE (A)

and the running time of A is about that of B. Furthermore, PKE1 is rigid.
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Theorem 25 ([12, Theorem 3.2]). Assume PKE to be δ-correct and γ-spread. Then, for any
OW-CPA-PCVA adversary B that issues at most qG queries to the random oracle G, qP queries to a
plaintext checking oracle PCO, and qV queries to a validity checking oracle CVO, there exists an
INDCPA adversary A such that

AdvOW-CPA-PCVA
PKE1

(B) ≤ (qG + qP ) · δ + qV · 2−γ +
2qG + 1

|M|
+ 3 ·AdvINDCPA

PKE (A)

and the running time of A is about that of B.

In Thm. 11, we are only interested in plain OW-CPA security. By definition, OW-CPA security is
OW-CPA-PCVA security with qP = 0 queries to the additionally provided plaintext checking oracle
PCO and qV = 0 queries to the validity checking oracle CVO, thus the term (qG + qP + 1) ·
AdvOW-CPA

PKE (A) in Theorem 3.1 simplifies to (qG + 1) ·AdvOW-CPA
PKE (A).

The two terms involving δ and γ are shared by both bounds and account for how both proofs
simulate the two additional oracles PCO and CVO. Since we are only interested in plain OW-CPA
security, we can dismiss the two oracles and the respective terms vanish.

C Proof that the TC-transform maintains code unpredictability (Proofs
of Thm. 11)

We briefly repeat the proof’s main idea: to an cUP adversary trying to predict the code belonging
to a ciphertext, there is not too much of a difference between attacking PKEC and its derandomized
version TC[PKEC,G]. Since the only additional attack surface is that it might be more easy to invert
derandomized ciphertexts, thus breaking OW-CPA security of T[PKE,G], we bound the success via
a OW-CPA reduction both in the ROM (Thm. 11).

C.1 Proof of ROM Thm. 11

Consider the two games given in Fig. 16.

GAMES G0 −G1

01 (pk, sk)← KeyGen
02 m←$M
03 r ← G(m) �G0

04 r←$R �G1

05 (cd, c)← EncPRFC (pk,m; r)
06 cd′ ← AG(pk, c)
07 return Jcd = cd′K

BG(pk, c∗)
08 LG ← ∅
09 cd′ ← ATC[PKEPRF

C
G],max(pk, sk,m, c, r)

10 m′←$M
11 for m ∈ LG

12 if Enc(pk,m; G(m)) = c∗

13 m′ ← m
14 return m′

Fig. 16: Games G0 and G1 and adversary B for the proof of Thm. 11. List LG stores A’s random
oracle queries to G.

Game G0 is the confirmation code unpredictability game against TC[PKEPRF
C G].

|Pr[G0 ⇒ 1]| = AdvcUP
TC[PKEC,G](A) .
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Game G1 differs from G0 by decoupling the involved randomness r from the message: when
computing (c, cd)← EncC(pk,m; r), we now use a uniformly random value r that is independent of
m instead of using r ← G(m0). In other words, we switch from the EncC algorithm of TC[PKEC,G]
to that of PKEC. Game G1 thus is exactly the unpredictability game for the underlying augmented
scheme PKEC.

|Pr[G1 ⇒ 1]| = AdvcUP
PKEC

(A) .

Since we model G as a random oracle, the change is unnoticed by A unless it queries G on m,
thereby breaking one-way security of TC[PKE,G]. To formalize this, we start by calling the event
QUERY.

|Pr[G1 ⇒ 1]− Pr[G0 ⇒ 1]| ≤ Pr[QUERY] .

We now define a OW-CPA adversary B against T[PKE,G] in Fig. 16 that wins if QUERY occurs:
B forwards its challenge ciphertext to A. It forwards A’s random oracle queries to G to its own
random oracle, and also keeps track of these queries by storing them in a list LG. If QUERY occurs,
the challenge plaintext appears in LG. Since T[PKE,G] encrypts deterministically, B can go through
the list after A has finished and identify the right plaintext.

Pr[QUERY] ≤ AdvOW-CPA
T[PKE,G](B) .

Adding the inequalities gives the desired bound.

D IND-CCA security of our transformations UC6⊥
m and FOC6⊥

m

D.1 UC6⊥
m is IND-CCA secure in the ROM

Our ROM theorem below establishes a bound that resembles the bound U6⊥m that was given in [13,
Thm. 2.1.7], except that Thm.2.1.7 bounded correctness errors slightly differently.

Theorem 26 (ROM security of UC6⊥m). Let PKEC be a deterministic confirmation augmented
PKE with code and ciphertext generation independent of G, and assume the underlying PKE to be
δ-worst-case correct. If there are any random oracles used in the construction of PKEC, let qEnc,O
denote an upper bound on the number of random oracle queries that EncC trigger upon a single
invocation. Let H : PK → {0, 1}γ be a fixed-output length function.

Let A be an adversary against IND-CCA security of KEMC = UC6⊥m[PKEC,G,H, J], issuing at most
qD many queries to the decapsulation oracle for KEMC , and at most qO, qG, qJ queries to the random
oracle used in PKE and the random oracles G, J, respectively.

Then in the ROM, there exists a OW-CPA adversary B against PKE such that

AdvIND-CCA
KEMC

(A) ≤ AdvOW-CPA
PKE (B) + (qO + qG(qEnc,O) + 1) · δ +

qJ
|M|

,

B issues at most qO + qG · (qEnc,O) many queries to oracle O, and the running time of B is about
that of A.

Proof. Our proof is close to the proof for U6⊥m that was given in [13]. Recall that we denote by
Enc(pk,m) the algorithm that runs EncC(pk,m) and returns only the ciphertext. Likewise, let Code
denote the algorithm that runs EncC and outputs only cd. We start by recalling its high-level
idea and discussing how to adapt it to UC6⊥m: IND-CCA attacker A is given a challenge plaintext
c∗ = Enc(pk,m∗) and a challenge key, which is either random or G(m∗). In the ROM, G(m∗) is
indistinguishable from random unless A queries G on m∗, which can be leveraged by one-way re-
duction B that uses A to invert its challenge plaintext c∗. To help B simulate the oracle for Decaps
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without sk, the proof utilizes that Enc is deterministic – B uses Enc to recognize when a ran-
dom oracle query m to G is connected to a decapsulation query c, in which case it outputs the
same key. The simulation thus switches the connection between the oracles from Decaps(sk, c) =
G(Dec(sk, c)) to G(m) = Decaps(sk,Enc(pk,m)). A only notices this when finding a message m for
which Dec(sk,Enc(pk,m)) 6= m, which explains the δ-term.

To adapt the proof to UC 6⊥m, we note that we can easily integrate random oracle input H(pk)
into the reasoning above since pk is a public value. To integrate cd, we leverage that EncC is as-
sumed to be deterministic and one can thus easily identify the code that belongs to a plaintext. To
enable the simulation of Decaps for UC6⊥m, our proof essentially redefines the two oracles such that
their connection switches from Decaps(sk, c) = G(m′,H(pk),Enc(pk,m′)), where m′ = Dec(sk, c), to
G(m,H(pk),Enc(pk,m)) = Decaps(sk,Enc(pk,m)).

We now recall the ROM proof of U⊥m in more detail and discuss in the relevant places how we
adapt it to accommodate the additional hash inputs.

Game 1. To prepare the simulation of the oracle for Decaps, the proof first replaces ‘implicit
rejection’ keys with uniformly random values. This goes unnoticed unless A queries J on the rejection
seed z, which happens with probability qJ/|M|. This game needs no adapting.

Game 2. To prepare the simulation of the oracle for Decaps, the proof now ‘patches encryption
into’ the lazily sampled random oracle G: upon a query m to G, the game computes the encryption
c of m and stores c together with the randomly sampled key in an additional book-keeping list LD.
Upon a query c to the decapsulation oracle, the game consults list LD to keep A’s view consistent,
i.e., to return the key that was already associated to that ciphertext (if it already exists). Effectively,
this switches the association from Decaps(sk, c) = G(Dec(sk, c)) to G(m) = Decaps(sk,Enc(pk,m)).
Thus, the switch of association could only create an inconsistency in one of two cases:

– A queries G on a message that exhibits decryption failure – in that case, the proper input to G,
m′, would differ from the chosen input m. This is reflected in the δ-term.

– A could request two distinct ciphertexts c1 6= c2 that both decrypt to the same message m. In
game 1, the decapsulation oracle would respond to both queries with the same value G(m). This
would not necessarily be the case in game 2. This inconsistency is prevented by requiring PKE
to be rigid, i.e., by requiring that for any key pair and any ciphertext c, it always holds that
m′ = Dec(sk, c) =⊥ or Enc(pk,m′) = c.

We now adapt Game 2 to accommodate the additional hashing of confirmation code and
public-key identifier H(pk). Intuitively, this works since pk is a public value and since we assume
code generation to be deterministic: upon a query (m,h, cd) to G, the game checks if h = H(pk).
If yes, it computes the code cd′ ← Code(pk,m) and checks if cd = cd′. If yes, it computes the
encryption c of m and stores c together with the randomly sampled key in book-keeping list
LD. Upon a decapsulation query, the game then again consults list LD to keep A’s view con-
sistent. This switches the association from Decaps(sk, c) = G(Dec(sk, c),H(pk),Code(Dec(sk, c))) to
G(m,H(pk),Code(pk,m)) = Decaps(sk,Enc(pk,m)). With the same reasoning as in the original proof,
we note that this goes unnoticed unless A queries G on a message that exhibits decryption failure,
which is upper-bounded by the same δ-term as before. (We note that if no decryption failure oc-
curred, then the confirmation codes Code(pk,m) and Code(pk,m′) for m′ ← Dec(sk,Enc(pk,m)) will
not differ for any queried message, thus not leading to any inconsistency.)

Note that we do not require PKE to be rigid because unlike U6⊥m, our transformation UC 6⊥m performs
re-encryption – if A requests two distinct ciphertexts c1 6= c2 that both decrypt to the same message
m, at least one of them will land in the implicit rejection branch, meaning their decapsulations would
already have differed in game 1.

Game 3. The last game argues indistinguishability of the challenge session key via one-wayness
of PKE: Game 3 raises flag CHAL and immediately aborts on the event that A queries G on the
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input that would generate the honest challenge key K0, so on the input m∗ with m∗ being the
challenge plaintext. (In our case, this changes to the input (m∗,H(pk),Code(pk,m∗)) with m∗ being
the challenge plaintext.) If this query never occurs, A never sees the honest challenge key, thus has
no chance distinguishing it from random beyond random guessing, A’ success probability in game 3
thus is 1/2. The change in A’s success probability between games 2 and 3 is upper-bounded by the
probability of CHAL, and event CHAL can be used to break the one-wayness of PKE. Our adapted
adversary B simulates game 3 for A. Since Enc and code generation are assumed to be deterministic,
B is able to recognize CHAL and thus m∗: upon each of A’s G queries (m,H(pk), cd), B checks if
Code(pk,m) = cd and, if yes, if Enc(pk,m) equals its challenge ciphertext c∗. If yes, it immediately
aborts A and returns m to its OW-CPA game. Since Enc is assumed to be deterministic, we have
Enc(pk,m) = c and B thus returns m∗ unless m∗ exhibits decryption failure, which happens with
probability at most δ.

D.2 UC6⊥
m is also IND-CCA secure in the QROM

Our second theorem adapts the ROM result, Thm. 26, to the QROM. It essentially recovers the
QROM security bound for U6⊥ that was given in [5, Thm. 2] for our augmented variant.

Theorem 27 (QROM security of UC 6⊥m). Let G be a quantum-accessible random oracle, let
H : PK → {0, 1}γ be a fixed-output length function, and let J : KJ×C → K be a PRF. Let PKEC be a
deterministic confirmation augmented PKE with code and ciphertext generation both are independent
of G, and let PKE denote the PKE scheme associated with PKEC (i.e. it uses as Enc the algorithm
that runs EncC and only outputs c). Assume PKE to be ε-injective, i.e., assume that

Pr[Enc(pk,−) is not injective] ≤ ε ,

where the probability is being taken over the internal coins of KeyGen and the choice of the random
oracles involved in the construction of PKEC (if any).

Let A be an IND-CCA adversary against KEMC = UC 6⊥m[PKEC,G,H, J] that issues at most qD
decapsulation queries. Then there exist three adversaries with about the same time/resources as A:

– an OW-CPA adversary B1 against PKE;
– an FFC adversary B2 against PKE, returning a list of at most qD many ciphertexts; and
– a PRF adversary B3 against J

such that

AdvIND-CCA
KEMC

(A) ≤ 2

√
AdvOW-CPA

PKE (B1) + AdvFFC
PKE(B2) + 2AdvPRF

J (B3) + ε .

Remark 28. Before discussing the proof, we note that for perfectly correct schemes, Enc(pk,−) will
be non-injective with probability 0; the ε-term thus vanishes in this case. We also note that for
PKE schemes that are deterministic, perfectly correct and that satisfy a stronger security property
called disjoint simulatability, it may be possible to achieve a tighter QROM security bound by
re-doing/adapting the proof of [26, Thm. 4.2].

Proof. The proof closely follows a proof [5, Thm. 2] for transformation U 6⊥. We will thus first recap
that proof and then discuss how to adapt it.

On a high level, the proof for U6⊥ resembles the ROM reasoning above: base indistinguishability of
the challenge session key on OW-CPA security, and to do so, replace A’s oracles with sk-independent
simulations. For the transformation U 6⊥, this means redefining the oracles such that G(m, c) =
Decaps(sk,Enc(pk,m)) instead of Decaps(sk, c) = G(Dec(sk, c), c). Since the random oracle queries
now are in superposition, the proof needs to adapt how to
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1. simulate G and Decaps without sk in a consistent way (no bookkeeping);
2. reason about the cases in which the simulation fails; and
3. find the challenge message m∗ within the random oracle queries.

To deal with #1, the proof for U 6⊥ ‘patches encryption into’ the random oracle by redefining G(m, c) =
R(c) whenever c = Enc(pk,m), where R is a random function. With this change, the proof can
simulate Decaps by setting Decaps(sk, c) = R(c).

The proof for U6⊥ notes that the simulation fails (#2) in three cases: a) the redefined G no
longer produces independent responses for distinct messages, which is prevented by requiring that
Enc(pk,−) is ε-injective. b)A requests a c that goes into the rejection branch and is able to distinguish
R(c) from J(z, c), which is captured via PRF. c) A requests a decapsulation of a ciphertext that
doesn’t decrypt to its originating plaintext, which is captured via FFC.

To deal with #3, the proof for U6⊥ utilizes double-sided OwtH (Lem. 6), which incurs a quadratic
loss. In the context of this proof, Lem. 6 states that any attacker A who can distinguish the session
key G(m∗, c∗) from uniform can be turned into an algorithm B that outputs m∗.

We now adapt this proof to our transformation UC 6⊥m by making the following changes: We sim-
ulate G via G(m,h, cd)← R(Enc(pk,m)) whenever h = H(pk) and cd = Enc(pk,m). This simulation
fails in exactly the same cases as in the non-adapted proof and thus leads to the same analysis. After
switching to the simulation, we can again apply double-sided One-way-to-Hiding (with our adapted
function G) to find the challenge message m∗ within A’s random oracle queries.

D.3 FOC 6⊥
m is IND-CCA secure in the ROM

Our third theorem, Cor. 29 below, essentially recovers the ROM security bound for FOC 6⊥m that was
given in [13, Sect. 2.1.4] for our augmented variant. Since FOC 6⊥m = UC6⊥m ◦ TC, Cor. 29 is obtained
by combining Thm. 26 with previous results about T that were given in [12].

Corollary 29 (ROM security of FOC 6⊥m). Let PKEC be a probabilistic confirmation augmented
PKE scheme, and assume PKE to be δ-worst-case correct. Let H : PK → {0, 1}γ be a fixed-output
length function. Let KEMC = FOC 6⊥m[PKEC,G,H, J,G

′].
Let A be an adversary against IND-CCA security of KEMC , issuing at most qD many queries to

the decapsulation oracle for KEMC , and at most qG/qG′/qJ queries to the random oracles G/G′/J.
According to Thm. 26, in the ROM there exists a OW-CPA adversary B against PKE such that

AdvIND-CCA
KEMC

(A) ≤ AdvOW-CPA
T[PKE,G′](B) + (qG′ + qG + 1) · δ +

qJ
|M|

,

B issues at most qG′ +qG many queries to oracle G′. According to [12], there thus exists a OW-CPA
adversary CO and an IND-CPA adversary CI against T[PKE,G′] such that

AdvOW-CPA
T[PKE,G′](B) ≤

{
(qG′ + qG + 1) ·AdvOW-CPA

PKE (CO)

3 ·AdvIND-CPA
PKE (CI) + 2qG′+qG+1

|M|
,

The running time of B, CO and CI is about that of A.

D.4 FOC 6⊥
m is IND-CCA secure in the QROM

Thm. 30 below essentially recovers the QROM security bound for FO 6⊥m that was implicitly given
in [14] for our augmented variant.
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Theorem 30. Let PKEC be a (randomized) augmented PKE scheme that is γ-spread, let H : PK →
{0, 1}γ be a fixed-output length function, and let KEMC = FOC 6⊥m[PKEC,G,H, J,G

′], and let PKE
denote the PKE scheme associated to PKEC. Let A be an IND-CCA adversary against KEMC , making
at most qD many queries to its decapsulation oracle, and making qG′ , qG queries to its respective
random oracles. Furthermore, let q = qG′ + qG, and let d and w be the query depth and query width
of the combined queries to G′ and G.

Then there exist an IND-CPA adversary BIND, a OW-CPA adversary BOW-CPA against PKE and
an FFP-CPA adversary C against T[PKE,G′] in the extractable QROM with extractor function Enc
such that

AdvIND-CCA
KEMC

(A) ≤ AdvPKE + (qD + 1) ·AdvFFP-CCA
PKE (C) + εγ , with (2)

AdvPKE =


4 ·
√

(d+ qD) ·AdvIND-CPA
PKE (BIND) + 8(q+qD)√

|M|

8 (d+ qD) ·
√
w ·AdvOW-CPA

PKE (BOW-CPA).
(3)

The additive error term εγ is given by

εγ = 24qD(qG + 4qD)2−γ/2 .

Remark 31. Before discussing the proof, we note that [14] show how to bound AdvFFP-CCA
PKE (C) with

a fine-grained analysis. Alternatively, [16] gives a simpler, albeit heuristic-prone bound by bounding

AdvFFP-CCA
PKE (C) ≤ 10(q + qD + 1)2 · δ ,

where δ is the correctness term of PKE as defined in Definition 1.

Proof. To summarize the proof for FO 6⊥m in [14], the proof proceeds in two steps with their own
separate theorems:

1. The first step mutes the decapsulation oracle, i.e., it bounds the difference between IND-CCA
and IND-CPA security of FO 6⊥m.

2. The second step bases IND-CPA security of FO 6⊥m on passive security of PKE.

For the first step, [14] showed how to simulate the decapsulation oracle without the secret key.
To that end, the randomness-generating random oracle G′ is modeled as an extractable QRO. The
extractable QRO provides not only the random oracle interface, but additionally an ‘extraction’
interface that (essentially) finds the right message for any queried ciphertext: the extraction interface
can be queried on any ciphertext c and returns either ⊥ or a originating message, i.e., a message m
such that Enc(pk,m; G′(m)) = c. Using the extraction interface, the simulated decapsulation oracle
can (essentially) decrypt the ciphertext without the secret key, and then derive the corresponding
session key like the original decapsulation oracle. This simulation fails in two cases: a) the attacker
submits a ciphertext such that the extraction interface does not find its preimage, which is captured
via γ-spreadness. b) the attacker submits a ciphertext for which the originating message and the
decrypted message do not match, which is captured via the ‘find failing plaintext’ property FFP-CCA.

The only differences in our setting are: instead of having an encryption algorithm Enc, we have
a code-augmented encryption algorithm EncC, and when deriving the key, we additionally hash the
obtained confirmation code and the public-key identifier H(pk). We can easily integrate random
oracle input H(pk) into that reasoning since pk is a public value. To integrate cd, we will use the
same extraction interface as the proof for FO 6⊥m. (We can define the ‘pure encryption’ algorithm Enc
of our augmented scheme PKEC as the algorithm that runs EncC and drops the confirmation code.)
With that, our simulation of the decapsulation oracle can again obtain the originating plaintext
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m of any queried ciphertext c. The simulation can then also acquire the associated confirmation
code since FOC 6⊥m derandomizes the algorithm EncC: the simulation can simply compute (c′, cd) :=
EncC(pk,m; G′(m)). (One might think that this costs one more call to G′, but this call is anyways
being done to be able to perform the re-encryption check.)

The second step simply argues that the resulting key is indistinguishable from random due to
One-Way To Hiding (in the extractable QROM). Since we did not change the extractor function,
this part can remain unchanged, except that we append H(pk) and cd to the inputs of the random
oracle G.
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