TurboTLS: TLS connection establishment with
1 less round trip

Carlos Aguilar-Melchor!, Thomas Bailleux', Jason Goertzen'?, Adrien Guinet!,
David Joseph!, and Douglas Stebila?

1 SandboxAQ
Palo Alto, USA
{firstname.lastname }@sandboxaq.com
2 University of Waterloo
Waterloo, Canada
{firstname.lastname}@uwaterloo.ca

Abstract. We show how to establish TLS connections using one less
round trip. In our approach, which we call TurboTLS, the initial client-to-
server and server-to-client flows of the TLS handshake are sent over UDP
rather than TCP. At the same time, in the same flights, the three-way
TCP handshake is carried out. Once the TCP connection is established,
the client and server can complete the final flight of the TLS handshake
over the TCP connection and continue using it for application data. No
changes are made to the contents of the TLS handshake protocol, only
its delivery mechanism. We avoid problems with UDP fragmentation by
using request-based fragmentation, in which the client sends in advance
enough UDP requests to provide sufficient room for the server to fit
its response with one response packet per request packet. Clients can
detect which servers support this without an additional round trip, if
the server advertises its support in a DNS HTTPS resource record.
Experiments using our software implementation show substantial latency
improvements. On reliable connections, we effectively eliminate a round
trip without any noticeable cost. To ensure adequate performance on
unreliable connections, we use lightweight packet ordering and buffering;
we can have a client wait a very small time to receive a potentially
lost packet (e.g. a fraction of the RTT observed for the first fragment)
before falling back to TCP without any further delay, since the TCP
connection was already in the process of being established. This approach
offers substantial performance improvements with low complexity, even in
heterogeneous network environments with poorly configured middleboxes.

1 Introduction

The Transport Layer Security (TLS) protocol is ubiquitous and provides security
services to many network applications. TLS runs over TCP. As shown in Figure[]
the main flow for TLS 1.3 connection establishment [21] in a web browser is as
follows.

DNS Server

DNS: A request

TLS Client TLS Server
UDP: TurboTLS id, TLS CH frag #1
TLS Client TLS Server
TCP: SYN
1st
TCP: SYN ACK RTT
Compute TLS
) y 1st
response SH,
TCP: ACK {ENcEXT,cRTREQ®, | RTT
b CRT* ,CRTVER" ,FIN}
TCP: TLS ci ond
n 7 TurboTLS T .
I'CP: TLS SH,{ENCEXT,CRTREQ" ,CRT* CRTVER* FIN} [RTT IDP: TurboTLS id, TLS response
TCP: TLS [Application Data*] UDP: TurboTLS id, TLS response frag #2_
UDP: TurboTLS id, TLS response frag #3
TCP: TLS {CRT* ,CRTVER" ,FIN} TCP: SYN ACK
3rd
TCP: TLS [Application Data”] } RTT
TCP: ACK
. . . TCP: TurboTLS id, TLS {CRT* ,CRTVER" FIN} 2nd
Fig.1: TLS 1.3 connection establish- F— - RTT
ICP: TLS [Application Data

ment

Fig. 2: TurboTLS connection establish-
ment

Fig. 3: Comparing message flow of TLS 1.3 and TurboTLS. Legend: dashed line
- UDP; solid line - TCP. * denotes optional message. {...} denotes messages
encrypted using TLS handshake traffic secret and [. ..] denotes messages encrypted
using TLS application traffic secret.

First, the client makes a DNS query to translate the provided domain name
into an IP address. Modern browsers simultaneously request from the DNS
server an HTTPS resource record [28] which can provide additional information
about the server’s HTTPS configuration. Next, the client performs the TCP
three-way handshake with the server. Once the TCP handshake has completed
and a TCP connection is established, the TLS handshake can begin; it requires
one client-to-server (C—S) flow and one server-to-client (S—C) flow before the
client can start sending application data.

In total, excluding the DNS resolution, this results in two round trips before
the client can send its first byte of application data (the TCP handshake and the
first C—S and S—C flows of the TLS handshake), and another round trip before
the client receives its first byte of response.

TLS does have a pre-shared key mode that allows for an abbreviated handshake
permitting application data to be sent in the first C—S TLS flow, but this requires
that the client and server have a pre-shared key in advance, established either

through some out-of-band mechanism or saved from a previous TLS connection
for session resumption.

Our contributions. We describe a method, which we call TurboTLS, for removing
one round trip of latency from TLS connection establishment by transmitting
the first two flows of the TLS handshake over UDP while doing the TCP
three-way handshake in parallel, then switching over to the TCP connection
for the final C—S handshake flow and the transmission of application data.
The message flow of TurboTLS is shown in Figure [2] It allows the client to
start sending its first byte of application in just one round trip (excluding the
DNS resolution), without requiring any pre-shared key. TurboTLS does not
require any change to the contents or state machine of the TLS protocol: it only
changes the network delivery mechanism. We employ several techniques to make
TurboTLS operate smoothly in a heterogeneous network environment where there
may be UDP packet loss, where some servers may not support TurboTLS, and
where intermediary network devices may have trouble with UDP fragmentation.
We implement TurboTLS and compare its network performance with TLS 1.3
and QUIC over local, national, and intercontinental distance connections, as
shown in Figure [5[and Table |2} In general, TurboTLS achieves median latency
approximately the same as QUIC, which is a 50% improvement compared to TLS
1.3 in long-distance connections, and slightly less in short-distance connections
to fixed overhead.

Table [1| summarizes the characteristics of TurboTLS compared with other
relevant network security protocols; see Section [2] and Section [£.1] for more details.

While our primary focus is on TLS connection establishment over TCP,
many other network protocols have a similar structure. Our techniques can be
generalized to an approach we call “turbo transport” which accelerates connection
establishment by shifting portions of the connection establishment to UDP.

2 Background

An application wishing to establish a secure connection between a client and a
server will select a protocol, or combination of protocols across network layers,
depending on a number of factors. Depending on the application (performance
requirements, reliability requirements, etc.) there may be a preference for a
connection-oriented or connectionless protocol. Finally, if a server does not
support a protocol, or an initial request is blocked due to other reasons such as
firewall filtering, then the client may need to fall back to another protocol that
reaches the server and is supported.

In this section, we review several existing options to set up application-level
secure channels, focusing on the TLS protocol, variants of TLS, and protocols
aiming to replace TLS. Our first-level categorization is whether the protocol runs
over TCP or UDP.

Runs UDP 1 req. Provides Kernel No TLS- Widely RTT to

over = 1 resp. conn. netw. state based deployed 1st byte
TLS 1.2 TCP — [J [J [J [[3
TLS 1.2 FalseStart TCP — [] [] [] [J [J 2
TLS 1.3 TCP — [J [J [J [[2
TLS 1.3 PSK TCP — [J [J O [[) 1
TLS 1.3 ECH TCP — [J [J O [&) 1
OPTLS TCP — [J [J O [@) 1
TLS 1.3 + TCP Fast Open TCP — ® o O [] ¢ 1
DTLS 1.3 UDP [O [J [J [[2
QUIC UDP @) [J O [J []) 1
MinimaLT UDP [] o @] [] O @) 1
MinimaL T with state UDP [J [@] @] O O 0
TurboTLS UDP+TCP [[J [[J [1
TurboTLS + PSK UDP+TCP [[J [O [— 0
TurboTLS + ECH UDP+TCP [] [] [] @] [J — 0

Table 1: Characteristics of TurboTLS compared to TLS and other opti-
mized/accelerated protocols and variants.

Legend: @: yes; ©, ®, O®: partial; O: no; —: not applicable. Columns: UDP 1 req. =
1 resp.: does each UDP request packet lead to at most one response packet? Provides
conn.: does the protocol provide connection-oriented (reliable, in-order) transport to
the application? Kernel netw.: are connection-oriented features generally implemented
in the kernel? No state: can full optimization be achieved without pre-shared state
between client and server? RTT to 1st byte: how many round trips required until the
client can send its first application byte, including TCP 3-way handshake if necessary.

2.1 Secure channel protocols over TCP

Applications requiring connection-oriented communication typically run over TCP,
such as ‘vanilla’ TLS. TCP uses an initial round trip to set up the connection,
using the TCP three-way handshake, then a further round trip is needed to
complete the TLS 1.3 handshake (or two further round trips for TLS 1.2 [23]),
during which the cryptographic parameters are negotiated, session keys are
exchanged, and authentication happens.

While the number of rounds trips and the resulting inherent latency is not
always a problem for clients/servers in close proximity to one another, this
presents a significant inconvenience where parties are far apart or suffer high
network latency. To ameliorate this issue, a series of optimizations to TLS have
been proposed, using a range of approaches.

Data-based optimizations. Some optimizations reduce the amount of data trans-
mitted without reducing the number of round trips. Perhaps the simplest ap-
proach is that of Compact TLS [22], which changes the format of TLS handshake
messages by removing obsolete fields and defining profiles of common options.
Another light-touch optimization is TLS Cached Information Extension [26],
which allows clients and servers to indicate they already have certain sets of
values, such as intermediate certificates, to avoid re-transmitting them, which can

save a significant amount of bandwidth, especially in the context of post-quantum
cryptography which typically results in larger intermediate certificates [30].

Optimizations using previous state. Some optimizations are possible if the client
has some prior server-dependent state, either from a previous connection or from
some public directory.

TLS has a pre-shared key (PSK) mode in which a client can make use of
a pre-shared symmetric key to save one round trip, allowing a client to start
sending application data in the first TLS 1.3 PSK flow (and thus on the second
C—S flow including the TCP three-way handshake).

TCP Fast Open [5] allows a client to save a cryptographic cookie from
a previous TCP connection and use it in a subsequent TCP connection to
immediately start sending application data without having to do a TCP three-
way handshake on the subsequent connection. TLS running over TCP Fast Open
would obviously then save one round trip.

OPTLS [12] was an alternative design for the TLS 1.3 handshake, running
over TCP, which supported a so-called 0-RTT mode allowing for a client to send
application data in its first C—S TLS flow (and thus on the second C—S flow
including the TCP three-way handshake) provided that the client had previously
cached or obtained out-of-band the server’s semi-static public key.

Encrypted Client Hello [24] is a proposed TLS extension that enables the client
to encrypt more of the Client Hello message as well as send early application
data in the first TLS C—S flight (and thus on the second C—S flow including
the TCP three-way handshake) provided the client (similarly to in OPTLS) has
previously cached or obtained out-of-band a public key of the server (which could
be distributed in a DNS record).

There were also several other modifications to TLS 1.2 that made use of
previous state, including TLS Snap Start [14] and “fast-track” client-side caching
[29].

2.2 Secure channel protocols over UDP

Another branch of optimizations utilizes the connectionless properties of UDP to
fast-track performance. However, since many applications need to connection-
oriented channels for data transmissions, most optimizations running on top of
UDP specify their own procedures for packet reordering, packet loss, and session
management, although we first briefly discuss DTLS, which does not.

Protocols not providing connection-oriented features to applications. DTLS [25]
runs exclusively over UDP, including for transmission of application data. Because
it runs on UDP, it is left to the application to reorder packets and deal with
loss. Cryptographically, DTLS is based on TLS. DTLS can be particularly useful
when trying to avoid problems such as TCP meltdown, whereby applications
may be trying to transport TCP traffic inside a secure tunnel which also runs on
TCP, essentially stacking TCP upon TCP and thereby amplifying the occurrence
of TCP timeout and other related problems. For this reason DTLS is often used
for VPN applications.

Protocols providing connection-oriented features to applications. Minimal.T
[I7] runs exclusively over UDP and uses a completely different protocol design
compared to TLS, but has not, to date, seen widespread usage.

QUIC [11] is another approach. Designed originally to improve performance
of encrypted transport for Google’s internal services, QUIC is an ambitious and
completely separate connection-oriented protocol running on top of UDP. Like
MinimallT, QUIC fundamentally merges the transport and security layers, and
provides many other protocol-specific optimizations, such as providing varying
header lengths (a longer header format is used for packets establishing connec-
tions), ACK-based packet loss detection which overcomes the instability of UDP
by providing a grace period to in-flight packets, packet re-ordering, and others.
A further benefit of QUIC is that for re-established connections, it is possible to
send encrypted application data in the first packet by re-using previously agreed
cryptographic parameters and utilizing a pre-shared key setup, using a technique
similar to those of OPTLS, and again at the cost of forward secrecy for the initial
data sent.

3 TurboTLS design

As described in Figure [2] TurboTLS sends part of the TLS handshake over UDP,
rather than TCP. Switching from TCP to UDP for handshake establishment
means we cannot rely on TCP’s features, namely connection-oriented, reliable,
in-order delivery. However, since the rest of the connection will still run over TCP
and only part of the handshake runs over UDP, we can reproduce the required
functionality in a lightweight way without adding latency and allowing for a
simple implementation.

Fragmentation. One of the major problems to deal with is that of fragmentation.
TLS handshake messages can be too large to fit in a single packet — especially
with long certificate chains or if post-quantum algorithms are used.

Obviously the client can fragment its first C—S flow across multiple UDP
packets. To allow a server to link fragments received across multiple UDP requests,
we add a 12-byte connection identifier field, containing a client-selected random
value id that is used across all TurboTLS fragments sent by the client. The
connection identifier is also included in the first message on the established TLS
connection to allow the server to link together data received on the UDP and
TCP connections. To allow the server to reassemble fragments if they arrive
out-of-order, each fragment includes the total length of the original message as
well as the offset of the current fragment; this can allow the server to easily copy
fragments into the right position within a buffer as they are received.

Similarly, the server can fragment its first S—C flow across multiple UDP
packets. One additional problem here however is that the S—C flow is typically
larger than the C—S flow (as it typically contains one or more certificates), so
the server may have to send more UDP response packets than UDP request
packets. As noted by [32] in the context of DNSSEC, many network devices do
not behave well when receiving multiple UDP responses to a single UDP request,

and may close the port after the first packet, dropping the request. Subsequent
packets received at a closed port lead to ICMP failure alerts, which can be a
nuisance.

We employ a recent method proposed by Goertzen and Stebila [8] for DNSSEC:
request-based fragmentation. In the context of large resource records in DNSSEC,
[8] had the first response be a truncated response that included information about
the size of the response, and then the client sent multiple additional requests,
in parallel, for the remaining fragments. This ensured that there was only one
UDP response for each UDP request. We adapt that method for TurboTLS: the
client, in its first C—S flow, fragments its own C—S data across multiple UDP
packets, and additionally sends (in parallel) enough nearly-empty UDP requests
for a predicted upper bound on the number of fragments the server will need to
fit its response. This preserves the model of each UDP request receiving a single
UDP response, reducing the impact of misbehaving network devices and also
reducing the potential for DDoS amplification attacks.

Reliability. UDP does not have reliable delivery, so packets may be lost. Since
the first TurboTLS round-trip includes the TCP handshake, we can immediately
fall back to TCP if a UDP packet is lost in either direction. This will induce a
latency cost of however long the client decides to wait for UDP packets to arrive
before giving up and assuming they were lost.

In an implementation, the client delay could be a fixed number of milliseconds,
or could be variable depending on observed network conditions; this need not be
fixed by a standard. We believe that in many cases a client delay of just 2ms after
the TCP reply is received in the first round trip will be enough to ensure UDP
responses are received a large majority of the time. In other words, by tolerating
a potential 2ms of extra latency on X% of connections, we can save an entire
round-trip on a large proportion (100 — X %) of the connections. This mechanic
was not implemented in the experimental results presented here and constitutes
future work.

Advertising support. To protect servers who do not support TurboTLS from
being bombarded with unwanted UDP traffic, it would be preferable if clients
only used TurboTLS with servers that they already know support it. Clients
could cache this information from previous non-TurboTLS connections, but in
fact we can do better. Even on the first visit to a server, we can communicate
server support for TurboTLS to the client, without an extra round trip, using
the HTTPS resource record in DNS [28]. Today when web browsers perform the
DNS lookup for the domain name in question, they typically send three requests
in parallel: an A query for an IPv4 address, an AAAA query for an IPv6 address,
and a query for an HTTPS resource record [28]. Servers can advertise support
for TurboTLS with an additional flag in the HTTPS resource record and clients
can check for it without incurring any extra latency.

4 Features and advantages

4.1 Comparison with other protocols
The protocols presented in Section [2|fall in one or more of the following categories:

— doing more than one round trip (TLS 1.2, TLS 1.2 FalseStart, TLS 1.3, DTLS
1.3, Compact TLS and TLS Cached Information Extension);

— modifying TCP/UDP directly or modify the way TCP/UDP are expected to
be used (TLS 1.3 + TCP Fast Open, DTLS, MinimaLT, QUIC); or

— maintaining a state (TLS 1.3 + TCP Fast Open, TLS 1.3 PSK, OPTLS, TLS
Encrypted Client Hello).

TurboTLS requires one round trip, uses TCP and UDP without modifying
them, and as middleboxes would expect them to be used, and does not require
a state. The rest of this section is dedicated to explaining the drawbacks of
falling into one of the three categories above. We include a comparison with
alternative protocols, but for a more detailed comparison with QUIC, which is
gaining significant traction, we refer the reader to Section [7}

One round trip. Doing more than one round trip increases latency by at least one
RTT. As already noted, global studies provided to the community by CAIDA [3]
show that the RTT for median connections is between 50 and 200ms, mainly due
to hops and distance, and if we consider the 90th percentile of connections, RTTs
are beyond 500ms. This latency introduction is amplified by an integer factor
for protocols in which connections occur sequentially (e.g. get a web page, get
frames in the page, get images in the frames). Besides user experience, this also
has an impact on usual implementations in which a server thread from a pool will
not come back to the pool until it finishes dealing with a client. For connections
with an RTT over a few milliseconds, when replacing TLS 1.3 by TurboTLS, we
indeed observed a multiplication by two of the maximum handshakes per second
that could be handled by a simple, yet usual, server implementation (thread pool
with as many threads as cores that asynchronously handles connections).

Standard and expected usage of TCP/UDP. Some protocols modify TCP/UDP
or the way they are expected to be used. Of course, TCP Fast Open modifies
TCP itself by introducing cookies for the first flight (which also requires a state).
This probably explains why, even if the initial proposal is from 2011, it is still
an experimental RFC and not enabled by default on most browsers. Other
protocols, like DTLS, MinimaLLT or QUIC, just use UDP, without modifying it,
but do long-term bidirectional exchanges, which is not the usual for UDP. Long-
term bidirectional exchanges are in general done over TCP, and most protocols
using UDP either follow the one query/one reply model (e.g. DNS) or the one
query/many replies model (e.g. FTP download).

Using UDP for long-term bidirectional exchanges introduces two issues: in-
stability and computational overhead. The main and simplest reason for UDP
instability are firewall rules which often block such traffic, except for the one
query/one reply model. Besides that, some middlebox functions for long term

bidirectional traffic are only available for TCP and with UDP will either reduce
performance or cause instability. For example, in the context of QUIC, extensive
guidance [13] is required to deal with usual traffic management over QUIC, with
the RFC addressing issues such as: “Passive Network Performance Measurement
and Troubleshooting; Stateful Treatment of QUIC Traffic; Address Rewriting
to Ensure Routing Stability; Server Cooperation with Load Balancers; Filter-
ing Behavior; UDP Blocking, Throttling, and NAT Binding; DDoS Detection
and Mitigation; Quality of Service Handling and ECMP Routing;” and more.
UDP bidirectional long-term exchanges that run through middleboxes that have
not implemented these features (adapted to QUIC or to other protocols) will
suffer from a lower quality of service and stability, sometimes with catastrophic
effects []. On top of that, when connection-oriented features are provided (e.g.
by QUIC or MinimaLT), one general drawback is that the implementation of the
protocol needs to provide for packet reordering and recovery from packet loss, in
user-space, whereas protocols running over TCP receive that for free from the
operating system’s kernel-space TCP implementation, which has typically been
highly tuned over many years, leading among other things to fewer interrupts
and copies.

No state. Maintaining a state brings obvious issues (no benefit on first connection,
lifetime, complexity) but most importantly, in the case of TLS, it also induces in
general a loss of forward secrecy and thus of security. TLS 1.3 in pre-shared key
(PSK) mode gains one round-trip only when it completely drops forward secrecy
(as it relies on a pre-shared secret). This is somewhat mitigated by OPTLS and
the Encrypted Client Hello TLS extension: if the client has previously obtained
the server public key, then use of OPTLS and Encrypted Client Hello TLS
extension are improved by one round-trip, and the loss of forward secrecy only
affects the first flow of messages from the client to the server. The rest of the
communication has forward secrecy.

No TLS changes. Additionally, TurboTLS shares, with TLS 1.3 + TCP Fast
Open, another nice feature: TurboTLS makes no change whatsoever to the
content of a TLS handshake, only changes the delivery mechanism. As a result,
all cryptographic properties of TLS are untouched. In fact, it is possible to
implement TurboTLS without changing the client or server’s TLS library at all,
and instead use transparent proxies on both the client and server side to change
the network delivery from pure TCP in TLS to UDP+TCP in TurboTLS. Of
course in such a construction the initial client or server, who does not know
TurboTLS, will observe two round trip times, but if each proxy is close to its
host (say on the same machine), then the two round trip times will be negligible,
and the higher latency client—server distance will only be covered over one round
trip.

4.2 Denial-of-Service (DoS) considerations

We now consider the implications for TurboTLS of various types of denial-of-
service and distributed denial-of-service attacks, including whether a TurboTLS

server is a victim in a DoS attack or being leveraged by an attacker to direct a
DDoS attack elsewhere. TurboTLS runs on top of both TCP and UDP so we
have to consider attacks involving both protocols.

DoS attacks on TurboTLS servers. The most significant TCP DoS attack is
the SYN flood attack where a target machine is overwhelmed by TCP SYN
messages faster than it can process them. This is because a server, upon receiving
a SYN, typically stores the source IP, TCP packet index number, and port in
a ‘SYN queue’, and this represents a half-open connection. An attacker could
flood the server with SYN messages thereby exhausting its memory. The server
cannot just arbitrarily drop connections because then legitimate users may find
themselves unable to connect. There are many protections against SYN flood
attacks, one of which is allocating only very small amounts (micro blocks) of
memory to half-open connections. Another is using TCP cryptographic cookies
[2/31] whereby the sequence number of the ACK encodes information about the
SYN queue entry so that the server can reconstruct the entry even if it was
not stored due to having a full SYN queue. TCP cookies enjoy support in the
Linux kernel — this and other such mitigations are already sufficient to protect
TurboTLS from SYN floods.

In general there are several vectors to consider for resource exhaustion attacks
on a server running TurboTLS. The server needs to maintain a buffer of received
UDP packets containing fragments of a TLS Client Hello message. To avoid
memory exhaustion attacks, a server can safely bound the memory allocated to
this buffer and flush old entries on a regular basis (e.g. after two seconds). In
the worst case, a legitimate client whose UDP packets are rejected from a busy
server or flushed early will be able to fall back to vanilla TLS over TCP, and will
incur negligible latency loss (compared to TLS over TCP) in doing so, because
TurboTLS starts the TCP handshake in parallel to the first C—S UDP flow. An
attacker spoofing IP addresses and sending well-formed Client Hello messages
could also try to exhaust a server’s CPU resources by causing a large amount
of cryptographic computation. Again, a server under attack can limit the CPU
resources allocated to UDP-received Client Hello messages, and then fall back
to vanilla TLS over TCP. In the worst case, legitimate clients affected by this
and having to fall back to vanilla TLS over TCP will incur negligible latency loss
compared to TLS over TCP since the TCP handshake has already been started
in parallel.

DDoS attacks leveraging TurboTLS servers. UDP reflection attacks present
another threat. Typical defenses against these are blocking unused ports, rate
limiting based on expected traffic loads from peers (exorbitant traffic loads
are likely to be malicious), or blocking IPs of other known vulnerable servers.
However such defenses are provided by middleboxes and therefore do not affect
the protocol.

It should be noted here that the redundant UDP packets sent along with
Client Hello are part of the TurboTLS-specific technique we call request-
based-fragmentation to mitigate against a client’s middlebox defenses incorrectly
filtering TurboTLS connections, as otherwise multiple UDP responses to a single

UDP request could be flagged as malicious behaviour. Furthermore, the one-to-
oneness of the UDP request/response significantly reduces the impact of any
amplification attack which tries to utilize a TurboTLS server as a reflector: an
attacker would have to send one UDP packet for every reflected packet generated
by the server, meaning that initial requests and responses are of comparable
sizes, making the amplification factor so low that it would be an ineffective use of
resources. Furthermore, the UDP requests ultimately must contain a fully formed
Client Hello before the server responds, limiting the amplification factor.

4.3 TurboTLS via transparent proxying

Since TurboTLS does not change the contents or computations of the TLS
protocol, and only changes how packets are transmitted over the network, another
benefit of TurboTLS is that it can easily be implemented as a transparent proxy.
As shown in Figure a client or server (or both) could utilize a proxy to
implement TurboTLS on their behalf, even for applications that only speak TLS.
A proxy could be a network device or middlebox, or even a daemon running on
the same machine as the software wishing to take advantage of TurboTLS. This
greatly reduces the burden of deployment as operators can simply run a proxy
rather than upgrading their networking stack.

Client

UDP Requests

UDP Responses

TCP SYN ACK

L
]
I 10 s
|
A

Tcp ACK.

Il

Fig. 4: A client and a server each using a proxy to use TurboTLS

A TurboTLS proxy would intercept TCP-based TLS communication and
perform the client-based UDP fragmentation portion of TurboTLS while also
setting up its own TCP connection. Should the UDP-based TurboTLS handshake
succeed in time, the proxy would relay the Server Hello message received over
the TurboTLS UDP socket to the client via the established (short-range) client-
to-proxy TCP connection. Since the proxy will be physically close to the client,

the latency of establishing the TCP connection between the client and proxy
will be negligible, so the client still receives the benefit from TurboTLS of not
having had to wait for the TCP handshake across the long distance connection,
while keeping the client completely oblivious to the fact of TurboTLS being used.
Proxies being used for performance improvements are not a new concept, and
have been used for satellite communication for years [9]. Using proxies with TLS
also is not new, as several software packages offer the ability to upgrade TLS
versions [GIT8ITII20].

4.4 TurboTLS improvements

We briefly mention a few alternative TurboTLS designs that may improve com-
patibility or can further reduce the latency assuming pre-shared state, and which
may be interesting as future work.

TurboTLS optimization: TurboTLS for TLS in pre-shared key mode. Pre-shared
key (PSK) mode of TLS 1.3 allows a client and server with a pre-shared symmetric
key to eliminate parts of the handshake, and allows the client to optionally start
sending encrypted application data its first C—S TLS flow, albeit without forward
secrecy. The TurboTLS technique could be applied to TLS 1.3 PSK mode, running
the first TLS 1.3 PSK C—S and S—C flows (including any early application
data) over UDP and then switching over to TCP for the rest of the connection.
This would allow for transmission of application data on the very first C—S
TurboTLS flow, but comes at the cost of sacrificing forward secrecy, since PSK
mode does not offer it. Early application data in both the first C—S and first
S—C flows would be over UDP, with only the lightweight reliability features
offered by TurboTLS compared to the more extensive reliability features offered
by TCP.

TurboTLS optimization: TurboTLS + TLS encrypted client hello. Encrypted client
hello (ECH) [24] is a mechanism to encrypt parts of the TLS 1.3 handshake under
a semi-static server public key. This mechanism even allows for the transmission
of application data one round trip earlier, but only by sacrificing forward secrecy.
The TurboTLS approach combined with ECH could allow for transmission of
application data on the very first C—S TurboTLS flow, at the cost of sacrificing
forward secrecy. Again, early application data flows would be over UDP with
TurboTLS’s lightweight reliability features compared to TCP’s more extensive
reliability.

TurboTLS variant: UDP first stage + TLS 1.3 PSK handshake. When the UDP
and TCP payloads of TurboTLS are combined, they contain an unaltered TLS
1.3 handshake. However, if the TCP portion is inspected on its own, it will appear
to be only a part of a TLS handshake, and there is the potential that this could
cause compatibility problems for some middleboxes/firewalls/interceptors. An
alternative would be for the TLS handshake to terminate after the UDP portion
of TurboTLS is completed, use the TLS keying material exporter paradigm to
output a shared secret between the client and the server, and then use that

shared secret as a pre-shared key in a TLS 1.3 PSK mode handshake over the
TCP connection. This still maintains the RT'T and latency improvements offered
by TurboTLS, but ensures that the data within the TCP payloads are a fully
standards-compliant TLS 1.3 PSK handshake transcript, which should further
reduce the risk of incompatibilities from poorly configured middleboxes. (Note
this differs from the “TurboTLS optimization: TurboTLS for TLS in pre-shared
key mode” mentioned above: the earlier paragraph on optimization for TLS in
PSK mode is about using the TurboTLS technique to split a non-forward secure
PSK handshakes across UDP and TCP, whereas this paragraph’s TurboTLS
variant does a forward-secure handshake in the UDP first stage and then uses
the output of that as a PSK in a TLS 1.3 PSK handshake.)

5 Experimental analysis

We implemented TurboTLS to compare its performance with vanilla TLS 1.3
and QUIC. Our preliminary proof-of-concept implements most of TurboTLS as
described in Section [3] but not yet completely; see the “Limitations” paragraph
below.

Libraries and cryptographic algorithms. Our implementation of TurboTLS is
based on OpenSSL [34], using Open Quantum Safe fork of OpenSSL to provide
support for post-quantum algorithms [33]. We take advantage of OpenSSL’s BIO
interface to have a fine control over the I/O operations, allowing us to transmit
some messages over UDP instead of TCP.

In our experiments, we considered two cryptographic suites, where we varied
the public key algorithms used:

— Elliptic curves: ECDSA signatures and ECDH ephemeral key exchange using
the nistp256/secp256rl curve.

— Post-quantum: Dilithium2 signatures [15], and Kyber-512 key exchange [27].
This suite results in both the C—S and S—C TLS handshake flows being
fragmented.

In both cases, we used the same symmetric algorithms (AES-128 in Galois
counter mode, SHA-256). We use a single self-signed certificate, in other words,
a certificate chain of length 1.

Network. We used four network configurations:

— Local: The client and server are in the same data center of a cloud provider,
with a ping time of 480-486 microsecondsEI

— Continental: The client was in a data centre in Paris, and the server was in a
data centre in Belgium, within the same cloud provider network, joined by a
network connection with an observed ping time of 4.9-5.2 milliseconds.

3 Our TLS/TurboTLS experimental results and QUIC experiment results were collected
in different data collection sessions, so there is a small difference between ping times
across the two data collection sessions, which we believe is due to natural network
variation.

— Intercontinentall: The client was in a data centre in Paris, and the server was
in a data centre in Oregon, within the same cloud provider network, joined
by a network connection with an observed ping time of 132-133 milliseconds.

— Intercontinental2: The client was in a data centre in Paris, and the server was
in a data centre in Australia, within the same cloud provider network, joined
by a network connection with an observed ping time of 268—-270 milliseconds.

The only source of latency we introduce is distance, but there are many other
reasons for latency to be in the hundreds of milliseconds: the number of network
hops (when changing between providers, or going to end users), the server load
(which can provoke waiting queues over each round-trip), and the technology
of the intermediate networks (IoT, 3G, etc.). In practice, global studies showﬂ
that, ignoring server load or end-user delays, median connections lead to RTTs
mostly between 50 ms (US west coast to US west coast) and 200 ms (west coast
to Europe), and 90th percentile connections lead to RT'Ts going over 500 ms or
even 1000 ms [I0].

We addressed servers with IP addresses so we did not incur any time for
DNS resolution, and the client assumed the server supported TurboTLS without
making any DNS HTTPS resource record query.

Machines. In all cases, the machines used were Linux x86_64 cloud servers with 4
cores (8 veores taking into account HyperThreading) of an Intel Xeon E5-2696V4
Processor with 16 GB of RAM.

Results. Figure[5shows the results of the experiment across the two cryptographic
suites and four network configurations, comparing the latencies of TLS 1.3,
TurboTLS, and QUIC. The results reported show latencies at the 50th percentile
(median) for a 10 second experiment. Table |2|in the appendix includes the same
data as well as latencies at the 90th and 99th percentile.

As expected, in long distance connections (see Figure Figure [5d)), where
latency is primarily due to the time for information to travel between endpoints,
saving one round-trip using TurboTLS approximately halves the latency compared
to TLS 1.3, and TurboTLS latency behaves similarly to QUIC at both the median
and 90th and 99th percentiles.

In low-latency connections (see Figure Figure , the main outcome
remains that TurboTLS outperforms TLS 1.3, but there is more subtlety. First,
median latency of the 1 RTT protocols (TurboTLS and QUIC) is less than that of
the 2-RTT TLS 1.3, but not fully reduced by 50%, which is likely due to the fixed
cost of the computations. For example, in the Paris—Belgium setting (RTT of
5.2-5.6 ms) TurboTLS and QUIC have median latency about 60% that of TLS 1.3.
Second, latency of TLS 1.3 and TurboTLS at the 90th and 99th percentiles scales
differently than QUIC. We believe that this is not a fundamental characteristic
of TLS or TurboTLS and instead is related to the cloud environment we used
(Google Cloud Platform), specifically differing behaviour of TCP versus UDP in
low-latency high-throughput scenarios in hypervisors.

4 CAIDA’s Macroscopic Internet Topology Monitor https: //www.caida.org/catalog/
software/walrus/rtt/

https://www.caida.org/catalog/software/walrus/rtt/
https://www.caida.org/catalog/software/walrus/rtt/

Paris—Paris Paris—Belgium

W Ping(us) M Latencies - Med (us) M Ping (us) M Latencies - Med (us)
2,000 12500
10,000
1,500
2 € 7500
g 1000 g
g g s000
E E
> 500 =
H g 2,500
s s
0 0
TLS13with TuboTLS QUICwith TLS1.3 with TuboTLS ~ QUIC with TLS13with TuboTLS QUICwith TLS13 with TurboTLS ~QUIC with
ECDSAp256 _ 13with ECDSAp256 Dilthium2& 13with Dilfthium2 & ECDSAp256 _ 1.3with ECDSAp256 Dilthium2 & 13with Dilithium2 &
&nistp256 ECDSAp256 &ECDH Kyber512 Diithium2 & Kyber512 &nistp256 ECDSAp256 & ECDH Kyber512 Dithium2 & Kyber512
&nistp256 nistp256 Kyber512 &nistp256 nistp256

(a) Local: Client and server in same data{b) Continental: Client in Paris, server in

center Belgium
Paris—Oregon Paris—Australia
W Ping(us) W Latencies - Med (us) W Ping (us) M Latencies - Med (us)
300,000 600,000
% 200,000 7 400,000
g 4
'E 100,000 E 200,000
g g
g s
s s
0
TLS 1.3 with TurboTLS ~ QUIC with TLS 1.3 with TurboTLS QUIC with TLS 1.3with TurboTLS ~ QUICwith TLS 1.3 with TurboTLS QUIC with
ECDSAp256 1.3with ECDSAp256 Dilithium2 & 1.3 with Dilithium2 & ECDSAp256 1.3with ECDSAp256 Dilithium2 & 1.3 with Dilithium?2 &
&nistp256 ECDSAp256 & ECDH Kyber512 Dliithium2 & Kyber512 &nistp256 ECDSAp256 & ECDH Kyber512 Dliithium2 & Kyber512
&nistp256 nistp256 y! &nistp256 nistp256 Kyber512

(c) Intercontinental: Client in Paris, server (d) Intercontinental: Client in Paris, server
in Oregon in Australia

Fig. 5: Comparing performance of TLS 1.3, TurboTLS, and QUIC in 4 network
settings with 2 cryptographic suites (elliptic curves or post-quantum). Latencies
reported are time in microseconds from start of connection establishment until
client sends its first byte of application data.

Limitations. Our implementation does not include, as of yet, the request-based
fragmentation feature (in other words, the client only sends fragments for its
actual packets, and the server responds with with as many UDP packets as
needed). It also does not, as yet, fall back to TCP if the UDP packets are lost
or delayed too much but, in our handful of trials, we never observed a failure
of TurboTLS because of such issues (or any other reason). We do not expect
these to substantially change performance results, as they are primarily related
to compatibility.

Future work. To properly evaluate the effect of request-based fragmentation,
it is necessary to test over more complex heterogenous networks (those where
pathways are likely to include poorly configured middleboxes and bad network
connections) to fully ascertain the impact of the TLS fallback both compared to
TurboTLS and to QUIC.

6 TLS depth of websites

The results of Section [5] are amplified when sequential TLS connections are
required: the savings from TurboTLS gained during many connections in series
could easily become human-noticeable, so we outline how this might happen.

Websites typically load resources from multiple domains (that eventually
resolve to different hosts). More than one TLS connection is thus generally
established by a browser to load and render a website. While most of these
connections can be done in parallel, some of them can initiate only once some
resources have been loaded, e.g. once some CSS of Javascript assets have been
processed. As this can happen recursively, we call the TLS depth the depth of
that recursion.

Figure [6 illustrates the TLS depth for two popular webpages as a directed
graph of TLS initiations. Nodes are the hosts to which the browser made TLS
connections, and an edge from host A to host B means that a resource downloaded
from host A spawned a TLS connection to host B. The longest path in the graph
is thus the TLS depth.

deh M
dd.nyti@.com/1

(a) TLS depth of 2 for https://(b) TLS depth of 4 for https://
lemonde.fr nytimes.com

Fig. 6: Examples of TLS initiation graph for two websites, as captured on June 1,
2023 from Paris, France. Red nodes indicate one example of the longest paths
(there may be more than one) leading to the TLS depth.

7 Identifying Usecases

In this section, based upon TurboTLS’s strengths and weaknesses with respect
to other TLS optimizations and protocols, we provide guidance to identify
applications where TurboTLS might be most profitably deployed.

 https://lemonde.fr
 https://lemonde.fr
 https://nytimes.com
 https://nytimes.com

7.1 TurboTLS as an alternative to QUIC

QUIC is gaining significant traction and is potentially the future of internet
content delivery. QUIC solves several problems that TLS over TCP faces, including
head of line blocking, mobile clients changing networks mid-connection, connection
multiplexing, and improved performance for the secure connection establishment
handshake. For HTTP, QUIC is undoubtedly superior to TurboTLS, if it can be
deployed. Of course, this comes at the cost of a substantially different protocol
and software stack. Even with all of QUIC’s strengths, it will be some time before
QUIC is fully adopted for web traffic, and even longer before QUIC replaces TLS
for the many other applications that are layered over TLS. As TurboTLS is an
optimization to TLS rather than an entirely new delivery protocol like QUIC, it
may be simpler to transition to TurboTLS in order to still receive TurboTLS’s
handshake latency improvements.

Cybersecurity concerns. Many standard network firewalls depend on information
from legacy TCP sessions to detect threats. QUIC’s encryption of transport
information results in standard network sensors being unable to even detect
QUIC. Combined with Google’s frequent maintenance of QUIC, this can make
security provision difficult for servers using QUIC, hence the recommendation by
some providers [7I16] to revert to (or remain on) HTTPS over TCP.

Legacy applications. The issue of legacy software persists due to gnarly real-world
problems of interacting applications with specific version integration requirements,
subject to third party maintenance and insurance. In cases where networking
upgrades such as implementing QUIC are not feasible, yet the applications
running over such software are business-critical and latency sensitive, TurboTLS’s
proxying capabilities can be appealing due to its non-invasive implementation,
and can be implemented adjacent to an application, at network gateway, or
anywhere in between.

Protocol simplicity. As previously mentioned, QUIC offers many great features.
However, these features add additional complexity to networking stacks providing
more opportunities for bugs to appear both in QUIC implementations as well
as applications which use them. TurboTLS has a relatively simple design, thus
making implementations less error-prone. TurboTLS can be used for those that
desire additional scrutiny of QUIC implementations and their APIs.

A simple alternative: Proxying TLS. QUIC uses the TLS handshake for connection
establishment, but it is integrated into the QUIC protocol and inserted into
QUIC messages. Additionally, QUIC performs some cryptographic computations
differently: in particular, as part of key derivation, QUIC provides different label
strings to the HKDF compared to TLS, so the session key derived in QUIC will
differ from that of TLS [35]. Consequently, without being given additional keying
material, it is not possible to implement a proxy that would transparently convert
a TCP-based TLS connection to a QUIC connection. As noted in Section a
TurboTLS proxy, can merely pass TLS handshake and record layer messages back
and forth across the appropriate UDP and TCP sockets without needing to know

any additional keying material. Thus, whatever the motivation (security concerns,
the complexity of migrating a given legacy application, or protocol complexity),
users may want to replace TLS with TurboTLS, or just use a TurboTLS proxy
instead of migrating to QUIC.

7.2 Generic Turbo Transport Situations

In some situations, all traffic transported by TCP could benefit from the un-
derlying ideas of TurboTLS so that for any TCP connection, one round trip is
removed (by a transparent proxy). We coin such an approach TurboTCP.

Traffic going through an internet provider core-network. When traffic from a
client regularly follows the same path: enter a core-network, use the network to
get closer to the destination, and exit such a network, it would be possible to use
TurboTCP proxies that significantly improve the user experience.

High-latency satellite communications. Proxying TCP into TurboTCP can also
be systematically done by a device/OS. For example this can be beneficial with
a satellite phone, that would avoid the very significant RTTs observed in such
communications.

Internet of Things. In the Internet of Things, energy is of the essence, having
lower latencies can also be seen as an approach to limit the time in which
communicating devices are online and using energy.

In all these settings, QUIC is clearly not an option as we are accelerating a
wide span of protocols that are transported via TCP. The simplicity of proxying
transparently TCP can be very attractive.

8 Acknowledgements

D.S. and J.G. were supported in part by Natural Sciences and Engineering
Research Council of Canada (NSERC) Discovery grant RGPIN-2022-03187.

References

1. et al, A.C.. Chrome HAR -capturer, https://github.com/cyrus-and/
chrome-har-capturer

2. Bernstein, D.J.: SYN cookies, http://cr.yp.to/syncookies.html

3. CAIDA: Round-Trip Time Internet Measurements from CAIDA’s Macroscopic
Internet Topology Monitor. https://www.caida.org/catalog/software/walrus/
rtt/, accessed: 2023-06-29

4. Chaudhary, S., Sachdeva, P., Mondal, A., Chakraborty, S., Maity, M.: YouTube
over Google’s QUIC vs internet middleboxes: A tug of war between protocol
sustainability and application QoE (2022), https://arxiv.org/abs/2203.11977

5. Cheng, Y., Chu, J., Radhakrishnan, S., Jain, A.: TCP Fast Open. RFC 7413 (Dec
2014). https://doi.org/10.17487/RFC7413

6. Cortesi, A., Hils, M., Kriechbaumer, T.: mitmproxy, https://mitmproxy.org/

https://github.com/cyrus-and/chrome-har-capturer
https://github.com/cyrus-and/chrome-har-capturer
http://cr.yp.to/syncookies.html
https://www.caida.org/catalog/software/walrus/rtt/
https://www.caida.org/catalog/software/walrus/rtt/
https://arxiv.org/abs/2203.11977
https://doi.org/10.17487/RFC7413
https://doi.org/10.17487/RFC7413
https://mitmproxy.org/

10.

11.

12.

13.

14.

15.

16.

17.

18.
19.
20.
21.

22.

23.

24.

. Fortinet: FortiGate firewall blog. https://community.fortinet.com/t5/

FortiGate/Technical-Tip-Block-QUIC-Protocol/ta-p/197661#: ~:text=
Go7%20t0%20the’20Applicationy20Control, port/2080%20and/,20port420443.,
accessed: 2023-06-29

. Goertzen, J., Stebila, D.: Post-quantum signatures in DNSSEC via request-based

fragmentation. arXiv (Nov 2022). https://doi.org/10.48550/ARXIV.2211.14196

. Griner, J., Border, J., Kojo, M., Shelby, Z.D., Montenegro, G.: Performance

Enhancing Proxies Intended to Mitigate Link-Related Degradations. RFC 3135
(Jun 2001). https://doi.org/10.17487/RFC3135, https://www.rfc-editor.org/
info/rfc3135

Huffaker, B., Plummer, D., Moore, D., Claffy, K.: Topology discovery by active
probing. In: Symposium on Applications and the Internet (SAINT) 2002 Workshops.
pp- 90-96. IEEE (2002)

Iyengar, J., Thomson, M.: QUIC: A UDP-Based Multiplexed and Secure Transport.
RFC 9000 (May 2021). https://doi.org/10.17487/RFC9000

Krawczyk, H., Wee, H.: The OPTLS protocol and TLS 1.3. In: IEEE European
Symposium on Security and Privacy (EuroS&P) 2016. pp. 81-96. IEEE (2016).
https://doi.org/10.1109/EuroSP.2016.18

Kiihlewind, M., Trammell, B.: Manageability of the QUIC Transport Protocol. RFC
9312 (Sep 2022). https://doi.org/10.17487/RFC9312| https://www.rfc-editor,
org/info/rfc9312

Langley, A.: Transport Layer Security (TLS) Snap Start. Internet-Draft draft-agl-tls-
snapstart-00, Internet Engineering Task Force (Jun 2010), https://datatracker,
ietf.org/doc/draft-agl-tls-snapstart/00/

Lyubashevsky, V., Ducas, L., Kiltz, E., Lepoint, T., Schwabe, P., Seiler, G.,
Stehlé, D., Bai, S.: CRYSTALS-DILITHIUM. Tech. rep., National Institute of
Standards and Technology (2020), available at https://csrc.nist.gov/projects/
post-quantum-cryptography/round-3-submissions

Networks, P.A.: Palo Alto Networks customer support portal.
https://knowledgebase.paloaltonetworks.com/KCSArticleDetail?id=
kA10g000000C1arCAC, accessed: 2023-06-29

Petullo, W.M., Zhang, X., Solworth, J.A., Bernstein, D.J., Lange, T.: MinimaLT:
minimal-latency networking through better security. In: Sadeghi, A.R., Gligor,
V.D., Yung, M. (eds.) ACM CCS 2013. pp. 425-438. ACM Press (Nov 2013).
https://doi.org/10.1145/2508859.2516737

Progress Software Corporation: Fiddler Everywhere, https://docs.telerik.com/
fiddler-everywhere/security

project, T.S.: Squid Web Cache, http://www.squid-cache.org/

REBEX CR s.r.o.: Rebex TLS Proxy, https://www.rebex.net/tls-proxy/
Rescorla, E.: The Transport Layer Security (TLS) Protocol Version 1.3. RFC 8446
(Aug 2018). https://doi.org/10.17487/RFC8446

Rescorla, E., Barnes, R., Tschofenig, H., Schwartz, B.M.: Compact TLS 1.3. Internet-
Draft draft-ietf-tls-ctls-06, Internet Engineering Task Force (Jul 2022), https!
//datatracker.ietf.org/doc/draft-ietf-tls-ctls/06/

Rescorla, E., Dierks, T.: The Transport Layer Security (TLS) Protocol Version 1.2.
RFC 5246 (Aug 2008). https://doi.org/10.17487/RFC5246

Rescorla, E.,; Oku, K., Sullivan, N., Wood, C.A.: TLS Encrypted Client Hello.
Internet-Draft draft-ietf-tls-esni-15, Internet Engineering Task Force (Oct 2022),
https://datatracker.ietf.org/doc/draft-ietf-tls-esni/15/

https://community.fortinet.com/t5/FortiGate/Technical-Tip-Block-QUIC-Protocol/ta-p/197661#:~:text=Go%20to%20the%20Application%20Control,port%2080%20and%20port%20443.
https://community.fortinet.com/t5/FortiGate/Technical-Tip-Block-QUIC-Protocol/ta-p/197661#:~:text=Go%20to%20the%20Application%20Control,port%2080%20and%20port%20443.
https://community.fortinet.com/t5/FortiGate/Technical-Tip-Block-QUIC-Protocol/ta-p/197661#:~:text=Go%20to%20the%20Application%20Control,port%2080%20and%20port%20443.
https://doi.org/10.48550/ARXIV.2211.14196
https://doi.org/10.48550/ARXIV.2211.14196
https://doi.org/10.17487/RFC3135
https://doi.org/10.17487/RFC3135
https://www.rfc-editor.org/info/rfc3135
https://www.rfc-editor.org/info/rfc3135
https://doi.org/10.17487/RFC9000
https://doi.org/10.17487/RFC9000
https://doi.org/10.1109/EuroSP.2016.18
https://doi.org/10.1109/EuroSP.2016.18
https://doi.org/10.17487/RFC9312
https://doi.org/10.17487/RFC9312
https://www.rfc-editor.org/info/rfc9312
https://www.rfc-editor.org/info/rfc9312
https://datatracker.ietf.org/doc/draft-agl-tls-snapstart/00/
https://datatracker.ietf.org/doc/draft-agl-tls-snapstart/00/
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://knowledgebase.paloaltonetworks.com/KCSArticleDetail?id=kA10g000000ClarCAC
https://knowledgebase.paloaltonetworks.com/KCSArticleDetail?id=kA10g000000ClarCAC
https://doi.org/10.1145/2508859.2516737
https://doi.org/10.1145/2508859.2516737
https://docs.telerik.com/fiddler-everywhere/security
https://docs.telerik.com/fiddler-everywhere/security
http://www.squid-cache.org/
https://www.rebex.net/tls-proxy/
https://doi.org/10.17487/RFC8446
https://doi.org/10.17487/RFC8446
https://datatracker.ietf.org/doc/draft-ietf-tls-ctls/06/
https://datatracker.ietf.org/doc/draft-ietf-tls-ctls/06/
https://doi.org/10.17487/RFC5246
https://doi.org/10.17487/RFC5246
https://datatracker.ietf.org/doc/draft-ietf-tls-esni/15/

25. Rescorla, E., Tschofenig, H., Modadugu, N.: The Datagram Transport Layer Security
(DTLS) Protocol Version 1.3. RFC 9147 (Apr 2022). https://doi.org/10.17487/
RFCO147

26. Santesson, S., Tschofenig, H.: Transport Layer Security (TLS) Cached Information
Extension. RFC 7924 (Jul 2016). https://doi.org/10.17487/RFC7924

27. Schwabe, P., Avanzi, R., Bos, J., Ducas, L., Kiltz, E., Lepoint, T., Lyubashevsky,
V., Schanck, J.M., Seiler, G., Stehlé, D.: CRYSTALS-KYBER. Tech. rep., National
Institute of Standards and Technology (2020), available at https://csrc.nist.
gov/projects/post-quantum-cryptography/round-3-submissions

28. Schwartz, B.M., Bishop, M., Nygren, E.: Service binding and parameter specification
via the DNS (DNS SVCB and HTTPS RRs). Internet-Draft draft-ietf-dnsop-svcb-
https-11, Internet Engineering Task Force (Oct 2022), https://datatracker.ietf,
org/doc/draft-ietf-dnsop-svcb-https/11/

29. Shacham, H., Boneh, D., Rescorla, E.: Client-side caching for TLS. ACM Trans.
Inf. Syst. Secur. 7(4), 553-575 (Nov 2004). https://doi.org/10.1145/1042031,
1042034

30. Sikeridis, D., Kampanakis, P., Devetsikiotis, M.: Post-quantum authentication in
TLS 1.3: A performance study. In: NDSS 2020. The Internet Society (Feb 2020)

31. Simpson, W.A.: TCP Cookie Transactions (TCPCT). RFC 6013 (Jan 2011). https:
//doi.org/10.17487/RFC6013

32. Song, L., Wang, S.: ATR: Additional Truncation Response for Large DNS Response.
Internet-Draft draft-song-atr-large-resp-03, Internet Engineering Task Force (Mar
2019), https://datatracker.ietf.org/doc/draft-song-atr-large-resp/03/

33. Stebila, D., Mosca, M.: Post-quantum key exchange for the internet and the open
quantum safe project. In: Avanzi, R., Heys, H.M. (eds.) SAC 2016. LNCS, vol.
10532, pp. 14-37. Springer, Heidelberg (Aug 2016). https://doi.org/10.1007/
978-3-319-69453-5_2

34. The OpenSSL Project: OpenSSL version 1.1.1s (Nov 2022), https://www.openssl|
org

35. Thomson, M., Turner, S.: Using TLS to Secure QUIC. RFC 9001 (May 2021). https:
//doi.org/10.17487/RFC9001, https://www.rfc-editor.org/info/rfc9001

Appendix A Computing TLS depth

We consider a website is loaded once the Javascript onload event has been fired.
A website that loads all its assets from the same host has a TLS depth of one. For
example, take the website https://mywebsite.com that first loads Javascript
code from https://mycdn.com. Next, that Javascript code fetches some images
from https://coolimages.com. This illustrates how loading the webpage for
the user may take many sequential TLS connections before being ready.

For computing the TLS depth of real-life websites, we need to capture all TLS
requests that have been done by a browser from the moment the website starts
loading up until the onload Javascript event has been fired. Most importantly,
we also need to capture the initiator of these TLS request (eg. a fetch request in
Javascript code), so that we can compute the complete graph of TLS initiators.

In practice, the Google Chrome browser can be used to load a website, stop
on the onload Javascript event, and dump all requests that have been done in the

https://doi.org/10.17487/RFC9147
https://doi.org/10.17487/RFC9147
https://doi.org/10.17487/RFC9147
https://doi.org/10.17487/RFC9147
https://doi.org/10.17487/RFC7924
https://doi.org/10.17487/RFC7924
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://datatracker.ietf.org/doc/draft-ietf-dnsop-svcb-https/11/
https://datatracker.ietf.org/doc/draft-ietf-dnsop-svcb-https/11/
https://doi.org/10.1145/1042031.1042034
https://doi.org/10.1145/1042031.1042034
https://doi.org/10.1145/1042031.1042034
https://doi.org/10.1145/1042031.1042034
https://doi.org/10.17487/RFC6013
https://doi.org/10.17487/RFC6013
https://doi.org/10.17487/RFC6013
https://doi.org/10.17487/RFC6013
https://datatracker.ietf.org/doc/draft-song-atr-large-resp/03/
https://doi.org/10.1007/978-3-319-69453-5_2
https://doi.org/10.1007/978-3-319-69453-5_2
https://doi.org/10.1007/978-3-319-69453-5_2
https://doi.org/10.1007/978-3-319-69453-5_2
https://www.openssl.org
https://www.openssl.org
https://doi.org/10.17487/RFC9001
https://doi.org/10.17487/RFC9001
https://doi.org/10.17487/RFC9001
https://doi.org/10.17487/RFC9001
https://www.rfc-editor.org/info/rfc9001

HTTP ARchive (HAR) format. The open-source project chrome — har — capturer
[1] does this automatically. The Chrome browser includes in its HAR dump an
initiator field that can be used to create our TLS initiator graph. Then, using
the tool, these HAR dumps can be parsed to generate TLS initiator graphs and
thus compute the TLS depth of websites.

Protocol Mode Signature & Key Exchange

Ping Throughput

Latency

Median P90 P99

us hs/sec s s us
Paris—Paris
TLS 1.3 ECDSAp256 & ECDH nistp256 486 2,313 1,611 1,898 2,315
TurboTLS 1.3 ECDSAp256 & ECDH nistp256 486 2,288 1,337 1,639 2,396
QUIC ECDSAp256 & ECDH nistp256 480 — 1,145 1,257 1,395
TLS 1.3 Dilithium2 & Kyber512 486 2,263 1,690 2,080 2,664
TurboTLS 1.3 Dilithium2 & Kyber512 486 2,487 1,096 1,400 2,513
QUIC Dilithium2 & Kyber512 480 — 1,413 1,590 1,736
Paris—Belgium
TLS 1.3 ECDSAp256 & ECDH nistp256 5,210 399 10,012 10,802 11,087
TurboTLS 1.3 ECDSAp256 & ECDH nistp256 5,210 553 6,196 10,164 11,189
QUIC ECDSAp256 & ECDH nistp256 5,620 — 6,016 6,401 6,800
TLS 1.3 Dilithium2 & Kyber512 5,210 401 9,842 10,829 11,667
TurboTLS 1.3 Dilithium2 & Kyber512 5,210 562 6,239 10,264 11,071
QUIC Dilithium2 & Kyber512 5,620 — 6,275 6,565 6,727
Paris—Oregon
TLS 1.3 ECDSAp256 & ECDH nistp256 132,021 15 264,618 265,417 266,728
TurboTLS 1.3 ECDSAp256 & ECDH nistp256 132,021 30 132,754 133,199 134,053
QUIC ECDSAp256 & ECDH nistp256 133,525 134,363 134,652 134,788
TLS 1.3 Dilithium2 & Kyber512 132,021 15 265,430 266,268 267,505
TurboTLS 1.3 Dilithium2 & Kyber512 132,021 29 132,562 132,986 133,479
QUIC Dilithium2 & Kyber512 133,525 134,479 134,775 134,897
Paris—Australia
TLS 1.3 ECDSAp256 & ECDH nistp256 268,157 7 538,426 539,390 539,787
TurboTLS 1.3 ECDSAp256 & ECDH nistp256 268,157 14 269,753 270,321 273,781
QUIC ECDSAp256 & ECDH nistp256 270,453 — 271,018 271,553 271,839
TLS 1.3 Dilithium2 & Kyber512 268,157 7 539,279 540,387 541,679
TurboTLS 1.3 Dilithium2 & Kyber512 268,157 14 269,606 270,026 271,118
QUIC Dilithium2 & Kyber512 270,453 — 271,262 271,793 272,056

Table 2: Performance of TLS 1.3, TurboTLS, and QUIC in 4 network settings
with 2 cryptographic suites (elliptic curves or post-quantum). Latencies reported
are time in microseconds from start of connection establishment until client sends
its first byte of application data.

	TurboTLS: TLS connection establishment with1 less round trip

